
Database FundamentalsDatabase Fundamentals
Applications for Seismology

Robert Casey
IRIS Data Management Center
March 2005

AgendaAgenda

 What a database is and why we use them
 Database access methods
 Database design
 Databases in seismology applications
 Introduction to MySQL
 Group exercise installing MySQL
 Setting up a MySQL database

Questions to be coveredQuestions to be covered

 What is a database?
 How do I work with a database?
 Why would I want to use one?
 How can I set up my own database?
 How are databases used in seismology?

Goals of the presentationGoals of the presentation

 Familiarize group with database concepts
 Provide group with training in installing

MySQL
 Preparation for working with Portable

Data Collection Centers

What is a database?What is a database?

 There are many ways we can define it.

What is a database?What is a database?

 A digital repository for tabular data.
 A persistent data store.
 A collection of data records with pre-

defined relationships.
 A software system that provides ready

access to data records.
 A software system that manages additions,

deletions, and changes to data.

Why use a database?Why use a database?

 Why not use something simple, like files
on disk?

Why not use disk files?Why not use disk files?

 Digital information can be stored in files:
– Text
– Pictures
– Formatted data

 Files are the standard form of disk storage
in a computer operating system

 No additional software necessary

Why not use disk files?Why not use disk files?

 Files can be identified by name
 Files can be placed in directories for

organizing them
 Files are simple to

– Edit
– Create
– Copy

 Little training required to access them

There is a downside, thoughThere is a downside, though……

 Files may seem easy at first, but they
present their own set of problems.

Downside to using filesDownside to using files

 Searching for specific information can be
difficult

 Filtering through lots of data files for
specific items can be a time-consuming,
linear process

 Relationships between different pieces of
information can be difficult to define

 Non-standard data retrieval methods

Downside to using filesDownside to using files

 Editing of files is generally ad-hoc, with
no enforced data formatting

 Addition and deletion of records can be
difficult to perform safely

 Other data dependencies may be affected
by the file editing

 Bulk editing of many data records can be
difficult and time consuming

Downside to using filesDownside to using files

 Difficult to represent columns of related
data in different ways.

 Management of large datasets with deep
directory trees can be difficult to traverse.

 Datasets can have excessive redundancies
that are troublesome to manage.

Is a database the answer?Is a database the answer?

 What do we gain from the database
approach?

Database benefitsDatabase benefits

 Data is quick to access and filter.
 Easy to change and update entries.
 Entire records and single values can be

updated individually or in bulk.
 Data relationships are established up front.

Database benefitsDatabase benefits

 Formatting for data fields is controlled
 Large, complex data relationships are easy

to manage and traverse
 Most databases use a common access

language
 A number of standard software interfaces

allow access by applications

Things to watch forThings to watch for

Database issuesDatabase issues

 Need database management software
 Some training is required to use
 Large databases require a dedicated

administrator to manage
 Setting up a database requires application

of up front design principles

Talking to a databaseTalking to a database

 How do we access one of these?

Talking to a databaseTalking to a database

 Need a database client…
 …which connects to a database server.
 The server manages the database and

provides communications to it.
 The client can be a local or remote

program that accesses the server.

Talking to a databaseTalking to a database

 Communication with the server is
generally through a standard query
language.

 A query is a command statement that
triggers access to the database.

 The query results in returned data records
or allows editing of the database contents

Talking to a databaseTalking to a database

 The most commonly known query
language is the Structured Query
Language (SQL)

 Most database systems support SQL
 In order to use SQL, we have to first

connect to a database.
 Techniques for this vary, but each

database tends to have a specific name.

Talking to a databaseTalking to a database

 An example client connection to a
database might be:

– dbclient myDB

 -where the client starts up and connects to
the database named ‘myDB’

Client connectionClient connection

 Once the client has started up, we can now
communicate to that database using SQL.

 You might see a prompt like this:
– myDB>

 At this point, the database is ready to
accept queries.

SQL querySQL query

 SQL consists of commands with specific
formatting.

 Some allow data reads, while others allow
us to add, delete, and edit entries from the
database.

 The first SQL command we will introduce
is the SELECT query.

SELECT querySELECT query

 The SELECT statement requires that we
specify one or more tables.

 A database table is the fundamental block
of information in a database.

 A table consists of rows and columns.
 The columns represent fields of

information for a particular thing
 The rows represent an individual item of

information

SELECT querySELECT query

 When we make a SELECT query, we ask
for one or more of these columns to be
returned from a table.

 Each column has a name and a data type
– Id INTEGER
– Employee VARCHAR
– Date TIMESTAMP

SELECT querySELECT query
 So, in getting these three fields from a table

called Employees, we would type

– SELECT Id, Employee, Date FROM Employees;

 Take note of the semicolon at the end.
 This is standard for SQL so that multiple lines

can be entered before the query is run.

SELECT querySELECT query

– SELECT Id, Employee, Date FROM Employees;

 SELECT comes first
 A comma-separated list of column names is then

listed
 The FROM command indicates that a table

name follows
 And finally the table name and a semicolon

SELECT querySELECT query

 The returned data will be all of the
records, or rows, in the table Employees
– Id Employee Date
– 1 Jane March 2, 2005
– 2 John April 25, 2004
– 3 Susan July 12, 2003

SELECT querySELECT query

 What if there were thousands of
employees?

 What if you wanted to only see employees
that had a Date entry before January,
2005?

 You set conditions on which records are
returned by using the WHERE clause.

SELECT querySELECT query

– SELECT Id, Employee, Date FROM
Employees WHERE Date < 2005-01-01;

 This example would just return the records
– Id Employee Date
– 2 John April 25, 2004
– 3 Susan July 12, 2003

SELECTSELECT multiple tablesmultiple tables

 Queries can also be performed on multiple
tables.

 This operation is called a join.
 You can select some or all of each column

in a table and have them displayed as if
they were a single table

SELECTSELECT multiple tablesmultiple tables

 Join operations use the WHERE clause to
connect specific fields that relate the two
tables together, such as an Id number.
– SELECT Employee, OfficeNum FROM

Employees, Rooms WHERE Employees.id =
Rooms.id;

SELECTSELECT multiple tablesmultiple tables

 The result is that two separate tables are
now presented in a unified fashion,
linking two different kinds of information
together.

Rooms
Id OfficeNum Floor
1 B201 2
2 C105 1
3 M300 3

Employees
Id Employee Date
1 Jane 2005-3-2
2 John 2004-4-25
3 Susan 2003-7-12

SELECTSELECT multiple tablesmultiple tables

 SELECT Employee, OfficeNum FROM
Employees, Rooms WHERE
Employees.id = Rooms.id;
– Employee OfficeNum
– Jane B201
– John C105
– Susan M300

SELECTSELECT multiple conditionsmultiple conditions

 Multiple conditions can also be specified,
with expected results:

 SELECT Employee, OfficeNum FROM
Employees, Rooms WHERE
Employees.id = Rooms.id AND Date <
2005-01-01 AND Floor < 3;
– Employee OfficeNum
– John C105

SELECT query synopsisSELECT query synopsis

 SELECT <col1>,<col2>,<col3>,…
FROM <table1>,<table2>,….
WHERE <condition1> <AND|OR>

<condition2> <AND|OR>
……
<conditionN>

 ;

Other query typesOther query types

 There is the INSERT command for
entering new data records

 INSERT INTO <table_name>
(col1,col2,…,colN) VALUES
(val1,val2,…valN)

 The column entries must correspond to the
value entries that follow the VALUES
keyword

Other query typesOther query types

 The DELETE command allows records to
be deleted

 DELETE FROM <table_name> WHERE
<condition1> <AND|OR> <condition2>
<AND|OR> ….

 Providing the proper conditions is critical
to ensuring the right records are deleted

 Try a test SELECT statement first to make
sure you are deleting the intended records

Other query typesOther query types

 The UPDATE command lets you make
changes to existing records.

 You change specific fields to new values.
 UPDATE <table_name> SET

<col1>=<val1>, <col2>=<val2>,…
WHERE <condition1> <AND|OR>
<condition2>…….

 Only the records that match the WHERE
conditions will be altered.

Query examplesQuery examples

 DELETE FROM Employees WHERE
Employee=‘John’;

 INSERT INTO Rooms
(Id,OfficeNum,Floor) VALUES
(4,’G202’,2);

 UPDATE Employees SET
Date=2005-3-10 WHERE Id=1;

Commit and RollbackCommit and Rollback

 Is there a danger of deleting the wrong
record and not being able to recover it?

 Yes, unless you implement a rollback.
 Many databases allow you to indicate

whether to auto-commit your changes or
leave you to commit the changes manually.

 If you have performed a number of
changes and change your mind, you can
enact a rollback command.

Commit and RollbackCommit and Rollback

 A rollback changes all of your SQL
transactions back to the point of your
previous commit.

 Using the commit command after your
transactions locks in the new changes.

 If the client is set to auto-commit, then
each and every transaction is
automatically put into effect.

 Rollback is not possible in this case.

Commit and RollbackCommit and Rollback

 Sometimes, rollback is a good option to
take if you have programs adding or
changing entries to the database.

 If an program error occurs in the middle
of a change, you can safely back out of the
change.

 This can be a good technique to prevent
partial or incomplete updates to the
database.

Commit and RollbackCommit and Rollback

 On a database with multiple clients
connected to it, other clients will not see
your changes until you issue a commit.

 You can perform relatively safe, isolated
changes and only push them to all other
clients when you are satisfied.

 If something goes wrong, the rollback
results in a reset from those entries, and
other clients are not affected in any way.

ACID modelACID model

 A good database system conforms to the
following rules, summarized by the letters
A C I D.

 A - Atomicity
 C - Consistency
 I - Isolation
 D - Durability

ACID modelACID model

 A - Atomicity
– Database modifications must be ‘all or

nothing’
– If one part of a transaction fails, then the

entire transaction fails
– Maintains the atomic nature or wholeness of

transactions in the event of a software or
hardware failure

ACID modelACID model

 C - Consistency
– Only valid data will be written to the database.
– If a transaction violates a consistency rule,

then an automatic rollback is performed
– If the consistency rules are met, then the

transaction executes
– The database goes from one consistent state

to the next on a successful execution

ACID modelACID model

 I - Isolation
– Multiple transactions occurring at the same

time should not impact each other
– This situation occurs with multiple

connecting database clients
– The database management server should run

one or the other client transactions entirely
before executing one from another client

– This prevents one transaction acting on
partial data from another

ACID modelACID model

 D - Durability
– Ensures that any transaction committed to the

database will not be lost
– In the event of a software or hardware failure,

transactions are preserved through activity
logs and database backups

– Committed transactions can be restored in the
event of system failure

Types of client connectionsTypes of client connections

 There are many ways to connect to a
database

 Different kinds of clients
 Some are native clients, that provide direct

access to the server and provide special
command features

 Pretty much every database has some
form of native client for performing query
operations

Types of client connectionsTypes of client connections

 There are other ways to access the
database, ones that allow programs to
automatically execute queries on behalf of
the user

 These are typically referred to as
interfaces.

InterfacesInterfaces
 Interfaces tend to be database independent in

their compatibility
 The same interface can be used on different

brands of database
 Software written to use a particular interface can

be moved to a different database with little or no
modification

 In reality, some changes are necessary, due to
slightly different SQL commands and data
models

Perl Perl DBIDBI
 Perl DBI is one such interface.
 DBI makes use of a driver to connect to a

specific brand of database, called a DBD
module. There is a driver for Oracle, a driver
for MySQL, and other commonly known
databases.

 Developers can write Perl code to query the
database and run automated operations on the
data.

 A special client does not have to be opened first,
the DBI module runs when the Perl script does.

Database connectionDatabase connection
 The first thing you do with DBI is make a client

connection to the database.
 Here is an example for an Oracle database

connection

$db = DBI->connect
(‘DBI:Oracle:seismicdb’,
‘user’,’password’) or die “cannot connect”;

Database connectionDatabase connection
 A successful connection call returns a handle to

the database client ($db).
 A failed connection would run the ‘die’

directive, displaying an error message
 We can now use this handle to make calls to the

database.
 The first thing we want to do is pass an SQL

statement to the database.
 The proper way to do this with an interface is to

prepare the statement before we actually execute
it.

Prepared statementPrepared statement

$st = $db->prepare(“SELECT name, lat, lon
FROM stations WHERE name =
‘COCO’”) or die “prepare failed”;

 Note that there is no semicolon at the end
of the statement

 DBI fills this in for you
 A statement handle is returned for driving

the execution of the query

Execute the statementExecute the statement

 The prepared statement sets up the client
to make the query, but does not actually
execute it until you follow up with the
execute command

$st->execute();

 The execution goes out, and the database
will return matching records

Retrieving the recordsRetrieving the records

 Databases typically accommodate
iteration through returned database rows

 This means we don’t have to load back
large sets of data to read them, we can
examine them a bit at a time

 In DBI, we read back one row at a time
and assign them to an array or to variables

Retrieving the recordsRetrieving the records
while (($name,$lat,$lon) = $st->fetchrow_array()) {

print “name=$name, lat=$lat, lon=$lon\n”;
}

 Here we loop over each row and print the
returned fields to the screen

 The loop exits when no more rows are
available

Why we prepare firstWhy we prepare first

 So why go through preparation and
execution as separate steps?

 The greatest benefit comes from when the
statement is executed many times in
succession

 A prepared statement is passed to the
database, and in most cases precompiled

 Multiple executions with different
aassigned values can occur very quickly

Execution with filled valuesExecution with filled values

 In our prepared statement, we asked for a
specific seismic station name

$st = $db->prepare(“SELECT name, lat, lon
FROM stations WHERE name =
‘COCO’”) or die “prepare failed”;

Execution with filled valuesExecution with filled values

 However, we can substitute this fixed
name with a tag to indicate we will put
something there later

$st = $db->prepare(“SELECT name, lat, lon
FROM stations WHERE name = ?”) or
die “prepare failed”;

 Notice the question mark (?)

Execution with filled valuesExecution with filled values

 Now that the statement has been
precompiled, we will execute a query with
the substitution mark filled in with the
station name

$st->execute(‘COCO’);

Execution with filled valuesExecution with filled values

 The power of this is found when you
query for multiple station names in a
single run

$st->execute(‘COCO’);
$st->fetchrow_array();

$st->execute(‘ANMO’);
$st->fetchrow_array();

….etc.

Multiple queriesMultiple queries
@stations = (‘COCO’,’ANMO’,’MAJO’,

’GNI’,…..,’YAK’);
foreach $station (@stations) {

$st->execute($station);
@lat_lon = $st->fetchrow_array();
print “$lat_lon[0],$lat_lon[1],
$lat_lon[2]\n”;

}
 Prepared statements make this very fast and

convenient to code

Two prepared statementsTwo prepared statements

 For a single database connection, you can
prepare multiple statements in advance

$st1 = $db->prepare(“SELECT lat,lon
FROM stations where name = ?”);

$st2 = $db->prepare(“SELECT name
FROM stations where lat < ?”);

$st1->execute($station);
$st2->execute($lat_max);

Closing the connectionClosing the connection

 Once all executions are completed, it is
good form to close the client connection
before the program exits

$db->disconnect();

 DBI is no longer connected to the server

DBIDBI commit and rollbackcommit and rollback

 Just as we discussed earlier, we can
implement safe client interaction through
the use of explicit commit and rollback
calls

$st1->prepare(“INSERT INTO stations
(name,lat,lon) VALUES (?,?,?)”);

$result = $st1->
execute(‘ABCDW’,34.6,23.2);

DBI commit and rollbackDBI commit and rollback

if ($result == 0) {
#failure
$db->rollback();

} else {
#success
$db->commit();

}

DBI auto-commitDBI auto-commit

 DBI also allows auto-commit of
statements at execution time

 We set this when we connect to the
database

$db = DBI->
connect(‘DBI:Oracle:seismicdb’,
{AutoCommit=>1});

 Typically, auto-commit is the default

Other interfacesOther interfaces

 DBI is just one example interface. There
are other standard examples in widespread
use:
– JDBC for Java
– PEAR DB for PHP
– ODBC for C
– and many other alternatives…

 All of these follow the same basic
approach as what we have shown with DBI

Questions?Questions?

Database designDatabase design

 Now we are going to delve into database
design concepts

 Before the SQL queries can occur, tables
have to be created and defined

 A database has to be created before we
can have tables

 We need to have a plan for organizing and
arranging our data before we create the
database

Database designDatabase design

 An effective database results from good
planning up front

 You want to have an understanding of the
data you will be storing

 You want to know how users will want to
access the data

 You will want to know how additions and
modifications occur to the data

Database designDatabase design

 Generally, a database does not consist of
just one table

 Many tables are created, and each relate to
each other in a certain way

 These relationships allow us to join tables
in a query in so that we can retrieve
complex representations of data

 These relationships, and the table contents
are referred to as a schema.

Database schemaDatabase schema

 A schema is an illustration or plan
showing data relationships

Stations
Id
Name
Description
Lat
Lon

Vaults
Id
Description
Altitude
Depth

Relationship diagramRelationship diagram

 This relationship diagram shows two
tables that relate to each other by their Id
number.

Stations
Id
Name
Description
Lat
Lon

Vaults
Id
Description
Altitude
Depth

One to One relationshipOne to One relationship

 This particular example demonstrates a
one-to-one relationship

Stations
Id
Name
Description
Lat
Lon

Vaults
Id
Description
Altitude
Depth

One to Many relationshipOne to Many relationship

 One to many relationships are common
and are the basis of most databases

Stations
Id
Name
Description
Lat
Lon

Channels
Id
Station_id
Name
Description

One to Many relationshipOne to Many relationship

 Note the change in fields relating to each
other

Stations
Id
Name
Description
Lat
Lon

Channels
Id
Station_id
Name
Description

One to Many relationshipOne to Many relationship

 As you can imagine, there is one station
and many channels at that station site.

 Each station record has a unique id
number.

 Each channel has a station_id number that
references a unique station id number

 Multiple channels can use the same
station_id value…they do not have to be
unique

Key fieldsKey fields

 These fields that form table relationships
are called key fields

 The key field that must be unique is the
primary key, which applies to the station
Id in this case

 The station_id field in Channels, which
does not have to be unique, is called a
foreign key

Channels
Id
Station_id
Name
Description

One to Many relationshipOne to Many relationship

 Foreign keys refer back to the primary key
in another table, forming the link

Stations
Id
Name
Description
Lat
Lon

Channels
Id
Station_id
Name
Description

Channels
Id
Station_id
Name
Description

Channels
Id
Station_id
Name
Description

One to Many relationshipOne to Many relationship

 We can signify this with symbols on the
link line drawn between the two fields

Stations
Id
Name
Description
Lat
Lon

Channels
Id
Station_id
Name
Description

Channels
Id
Station_id
Name
Description

1
N

Channels
Id
Station_id
Name
Description

One to Many relationshipOne to Many relationship

 The table on the left, on the ‘one’ side of
the relationship, is called a primary table.

Stations
Id
Name
Description
Lat
Lon

Channels
Id
Station_id
Name
Description

Channels
Id
Station_id
Name
Description

1
N

Channels
Id
Station_id
Name
Description

One to Many relationshipOne to Many relationship

 The table on the right, on the ‘many’ side
of the relationship, is called a related table.

Stations
Id
Name
Description
Lat
Lon

Channels
Id
Station_id
Name
Description

Channels
Id
Station_id
Name
Description

1
N

Many to Many RelationshipMany to Many Relationship

 You can establish relationships between
two tables in which many records point to
one record in the other table, and also the
same case in reverse.

 This is known as a many to many
relationship.

 Not many databases support this.
 They are not a recommended approach.

Many to Many RelationshipMany to Many Relationship

 The technique to get beyond this is to
create a ‘bridge’ table in between.

 This bridge table will facilitate a many to
one relationship to the other two tables,
avoiding the many-to-many relationship
complications.

Extending to many tablesExtending to many tables

 A typical database will have many
relationships all interconnected, with
many keys pointing to each other

Developing your tablesDeveloping your tables

 When starting out with table design, it is
good to figure out what your data fields
are going to be.

 Become familiar with the entire dataset
you are trying to represent, as well as how
they will be used.

 Identify how these pieces of data relate to
each other.

Developing your tablesDeveloping your tables

 You want to put your data fields into
groups that are closely related, such that
there are no data redundancies.

 One to one, and one to many relationships
should be established between these
groups.

 You can then construct tables from these
field groups.

Starting our first seismic tableStarting our first seismic table

 We will start out with some typical
seismic data elements for our first table.

 Next, we will refine our datasets to adhere
to good design principles.

 First, let’s get information on seismic
stations, their channels, and their
instruments.

Stations tableStations table
 Station name
 Station latitude
 Station longitude
 Station altitude
 Station depth
 Station Operator
 Number of channels
 Channel name
 Channel sample rate
 Channel gain
 Channel instrument type
 Number of instrument stages

Example tableExample table

Stations
name lat lon alt dep operator num_chan chan samp_rate gain inst stages
ABC 32.5 102.6 1033 0 Joe 3 BHE,BHN,BHZ 20,20,20 5.1E+03 CMG3 4
CDE -5.3 73.5 744 56 Sally 6 LHE,LHN,LHZ, 1,1,1, 7.2E+08 320 3

 BHE,BHN,BHZ 20,20,20
…..
…..
…..

Many repetitionsMany repetitions

 As you can see in this first example, there
are fields with multiple values in them.

 It is difficult to work with multiple entries
in one field, especially when they are of
arbitrary or varying length.

Repeating groupsRepeating groups

 We could put them as individual entries in
fields like chan1, chan2, chan3, etc….

 This is referred to as a repeating group.

Sta chan1 chan2 chan3 chan4
ABC BHE BHN BHZ null

Repeating groupsRepeating groups

 Repeating groups tend to result in ‘sparse’
tables with a lot of empty space.

 This technique also does not make it easy
to expand the number of related entries
because you soon run out of fields, or
have to add more to the table.

Need a better approachNeed a better approach

 We want to have one value per field in
each row.

 We might have to repeat some values in
rows in order to achieve this, such as
redundant station name entries.

 Still, this would offer a solution that
allows us to add as many new entries as
we need.

NormalizationNormalization

 This attempt to break up the data into
rows with unique values is called
normalization.

 Properly normalized tables means that we
can find a non-repeating set of values in
one place.

 This makes adding and deleting data
easier and less prone to error.

NormalizationNormalization

 Normalization has about 5 levels of
application, each one more stringent than
the last.

 We are only concerned with the first three.
 The first level that we are going to apply

is called the First Normal Form.
 A table in first normal form has no

multiple field values and no repeating
groups of the same type of field.

First normal formFirst normal form

Stations
name lat lon alt dep operator num_chan chan samp_rate gain inst stages
ABC 32.5 102.6 1033 0 Joe 3 BHE 20 5.1E+03 CMG3 4
ABC 32.5 102.6 1033 0 Joe 3 BHN 20 5.1E+03 CMG3 4
ABC 32.5 102.6 1033 0 Joe 3 BHZ 20 5.1E+03 CMG3 4
CDE -5.3 73.5 744 56 Sally 6 LHE 1 7.2E+08 320LP 3
CDE -5.3 73.5 744 56 Sally 6 LHN 1 7.2E+08 320LP 3
CDE -5.3 73.5 744 56 Sally 6 LHZ 1 7.2E+08 320LP 3
CDE -5.3 73.5 744 56 Sally 6 BHE 20 7.2E+08 320BB 3
CDE -5.3 73.5 744 56 Sally 6 BHN 20 7.2E+08 320BB 3
CDE -5.3 73.5 744 56 Sally 6 BHZ 20 7.2E+08 320BB 3

Lots of redundancyLots of redundancy

 Even as we have eliminated the groups of
values in a field, we have created a lot of
rows with redundant values.

 For each channel we have put in a record,
the corresponding station name is repeated.

 Also, the operator name is repeated. What
would happen if the operator changed to a
new person?

 We would have to edit several fields.

Functional dependencyFunctional dependency

 What we notice is that the values for
latitude, longitude, depth, and altitude
directly determine the station name.

 The station name is therefore the
determinant field.

 If a field value can only be one possible
value, based on the determinant field, then
it is considered functionally dependent.

Functional dependencyFunctional dependency

 With a given station name, we can
determine the latitude

 With the station name, we know the
Operator

 With the station name, do we know the
channel?

Functional dependencyFunctional dependency

 Since there are multiple possible channel
values for a station name, we say that the
channel is not functionally dependent

 We want to arrange our data so that in a
given table, there are only functionally
dependent fields in addition to the fields
for the primary key.

Second normal formSecond normal form

 Applying the Second Normal Form to a
table means that non-key fields must be
functionally dependent on the key field.

 The station name is the determinant in the
table, as well as the key field.

Second normal formSecond normal form

 Latitude, longitude, altitude, and depth
can stay.

 We will also allow the operator to stay,
provided there is only one per station.

 However, we must move the channel and
its related fields to a new table.

 The new table will be called ‘Channels’.

Second normal formSecond normal form
Stations
name lat lon alt dep operator num_chan
ABC 32.5 102.6 1033 0 Joe 3
CDE -5.3 73.5 744 56 Sally 6

Channels
Station chan samp_rate gain inst stages
ABC BHE 20 5.1E+03 CMG3 4
ABC BHN 20 5.1E+03 CMG3 4
ABC BHZ 20 5.1E+03 CMG3 4
CDE LHE 1 7.2E+08 320LP 3
CDE LHN 1 7.2E+08 320LP 3
CDE LHZ 1 7.2E+08 320LP 3
CDE BHE 20 7.2E+08 320BB 3
CDE BHN 20 7.2E+08 320BB 3
CDE BHZ 20 7.2E+08 320BB 3

Key fieldsKey fields

 Note in the new table layout, we had to
add a field to the Channels table called
‘Station’.

 In splitting the fields into two tables, we
risked breaking their association with each
other.

 We need to create a foreign key in the
Channels table.

Foreign keyForeign key

 A foreign key is simply a primary key
field moved to another table.

 The foreign key can use a different field
name.

 The value, however, needs to be identical.
 The foreign key refers back to the primary

key when relating the two tables.

Key fieldsKey fields

Stations
Name
…..

Channels
Station
Channel
……

1
N

Key fieldsKey fields

 You may have noticed that the Channels
table doesn’t have just one primary key
field.

 The primary key in this case must be more
than just the channel name, because BHZ
appears more than once in the ‘Channels’
table.

 However, the combination of station and
channel names forms a unique identifier.

Key fieldsKey fields

 The stars signify key fields.

Stations
Name*
…..

Channels
Station*
Channel*
……

1
N

Multiple field keyMultiple field key

 The primary key of a table can consist of
any number of fields.

 Conditions:
– the combination of fields is unique
– there are no nulls in any of the fields
– values contained in these fields shouldn’t

change very much

Candidate keyCandidate key

 It is possible to have different
combinations of fields be the primary key.

 This depends on the other tables being
related to.

 Any fields that can be in a primary key
group is called a candidate key.

Reviewing our tablesReviewing our tables
Stations
name lat lon alt dep operator num_chan
ABC 32.5 102.6 1033 0 Joe 3
CDE -5.3 73.5 744 56 Sally 6

Channels
Station chan samp_rate gain inst stages
ABC BHE 20 5.1E+03 CMG3 4
ABC BHN 20 5.1E+03 CMG3 4
ABC BHZ 20 5.1E+03 CMG3 4
CDE LHE 1 7.2E+08 320LP 3
CDE LHN 1 7.2E+08 320LP 3
CDE LHZ 1 7.2E+08 320LP 3
CDE BHE 20 7.2E+08 320BB 3
CDE BHN 20 7.2E+08 320BB 3
CDE BHZ 20 7.2E+08 320BB 3

More redundancies?More redundancies?
Channels
Station chan samp_rate gain inst stages
ABC BHE 20 5.1E+03 CMG3 4
ABC BHN 20 5.1E+03 CMG3 4
ABC BHZ 20 5.1E+03 CMG3 4
CDE LHE 1 7.2E+08 320LP 3
CDE LHN 1 7.2E+08 320LP 3
CDE LHZ 1 7.2E+08 320LP 3
CDE BHE 20 7.2E+08 320BB 3
CDE BHN 20 7.2E+08 320BB 3
CDE BHZ 20 7.2E+08 320BB 3

More redundancies?More redundancies?

Channels
Station chan samp_rate gain inst stages
ABC BHE 20 5.1E+03 CMG3 4
ABC BHN 20 5.1E+03 CMG3 4
ABC BHZ 20 5.1E+03 CMG3 4
 There are fields such as sample rate, gain,

instrument name, and number of stages
that repeat.

(Names and values are only for illustration)

Instrument as determinantInstrument as determinant

Channels
Station chan samp_rate gain inst stages
ABC BHE 20 5.1E+03 CMG3 4
ABC BHN 20 5.1E+03 CMG3 4
ABC BHZ 20 5.1E+03 CMG3 4
 We might say that the instrument (CMG3)

determines the gain, the sample rate, and
the number of stages.

 The instrument name is not a primary key.

Transitive dependencyTransitive dependency

 …is a functional dependency where
– a non-key field is determined by the value in

another non-key field
– that field is not a candidate key

 We might use this to further refine our
database tables.

Third Normal FormThird Normal Form

 A table is in third normal form if
– The table is in Second Normal Form
– There are no transitive dependencies

 To make this third normal form, we need
to create a new table, with the instrument
name as the primary key.

New instrument tableNew instrument table

Channels
Station chan inst
ABC BHE CMG3
ABC BHN CMG3
ABC BHZ CMG3
Instruments
Name samp_rate gain stages
CMG3 20 5.1E+03 4

What we have accomplishedWhat we have accomplished

Cleaner tables
Minimal data redundancies
Room to grow (scalability)
Ease of editing field values

Normalization ReviewNormalization Review

1NF – No repeating groups.
2NF – Non-key fields are

functionally dependent on the
entire primary key.

3NF – No transitive dependencies.

Guidelines for NormalizationGuidelines for Normalization

 For database normalization, good rules to
follow are:
– Look for repeating values
– Look for fields that relate to each other
– Determine the ‘parent’ field for the group
– Make more tables and break fields into

smaller functional groups

Guidelines for Primary KeysGuidelines for Primary Keys

 Use as few fields as possible.
 Make sure the field or fields provides a

unique identity.
 Avoid many-to-many relationships.
 If multiple key fields gets difficult to

manage, use a unique ID number as the
primary key instead.

End of Part 1End of Part 1

