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Appendix: Solution to problems

Chapter 2  

Solution 2.1  Using Euler’s formula, we can write the sinusoidal signal as the sum of two 
exponential signals 

Ai ω0t( )sin Ai
e

jω0t
e

j ω– 0( )t
–
2j

-----------------------------------⋅= (2.1-1)

Since we are dealing with a linear system, the output of the sum of the two input signals 

(here Ai
e

jω0t

2j
-----------⋅  and Ai– e

j ω– 0( )t

2j
------------------⋅ ) equals the sum of the individual output signals. 

These are 

Ai
e

jω0t

2j
----------- T jω0( ) e

jΦ ω0( )
⋅⋅  and Ai– e

j ω0–( )t

2j
------------------ T j ω– 0( )( ) e

jΦ ω– 0( )
⋅ ⋅ , respectively.

Therefore, the complete filter output signal is equal to:

Ai
T jω0( ) e

jΦ ω0( )
⋅( )e

jω0t
T j ω– 0( )( ) e

jΦ ω– 0( )
⋅( )e

j ω0–( )t
–
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--------------------------------------------------------------------------------------------------------------------------------------------- (2.1-2)

Because T j ω– 0( )( ) T jω0( )=  for the RC-filter (and for any real filter), we obtain

Ai
T jω0( )

2j
-------------------- e

jω0t jΦ ω0( )+
e

j ω– 0( )t jΦ ω– 0( )+
–( ) (2.1-3)
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Since Φ ω0( ) Im T jω0( )( ) Re T jω0( )( )⁄( )atan=  and   α–( )atan α( )atan–=  

we obtain Φ ω– 0( ) Φ ω0( )–=  and the output signal becomes

Ai
T jω0( )

2j
-------------------- e

j ω0t Φ ω0( )+( )
e

j ω0t Φ ω0( )+( )–
–( )⋅

Ai T jω0( ) ω0t Φ ω0( )+( )sin⋅ ⋅=
(2.1-4)

Using equations (2.21) and (2.22) we obtain for the RC filter output

Ai
1

1 RCω0( )2+
------------------------------------ ω0t ω0RC( )atan–( )sin⋅ (2.1-5)

Solution 2.2  The pole position is at 1 τ⁄– . τ R C⋅ 4,0Ω 0,1989495F⋅= =  which is 
4,0V A⁄ 0,1989495A /Vsec⋅ 0,795798sec= . Hence, the pole is at 1,2566–  (rad/s). 
For each point on the imaginary axis (angular frequency axis), determine the reciprocal 
of the length of the vector from the pole to that point. You can do this either by using a 
ruler and graph paper or simply by exploiting analytical geometry. Plot this value as a 
function of angular frequency or frequency, respectively. Below, the procedure is demon-
strated schematically for a frequency of 1Hz (Fig. A 2.1; note, that Fig. A 2.1 is not on 
1:1 scale).

.

ρ ω( )

σ

jω

Θ
X

(-1.2566,0)

Example: f=1 Hz  

ω 2π 1⋅ 6,2832= =6,2832

ρ 2π( ) 6,4076=

T j2π( ) 1
τ
--- 1

ρ ω( )
---------------=

T j2π( ) 1,2566
6,4076
---------------- 0,1961= =

Fig. A 2.1  Graphical determination of the modulus of the frequency response function for the RC 
filter of Problem 2.2. The plot demonstrates the evaluation for a frequency of 1 Hz. 
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Solution 2.3 The Digital Seismology Tutor (DST) simulates the action of systems 
defined by their transfer function in the complex s-plane. As we will see later in more 
detail, a transfer function of a more general system can have more than one pole as well 
as a number of zeros (at which the transfer function becomes zero). The positions of 
poles and zeros define the transfer function completely. In order to do the filtering, DST 
needs to know the position(s) of the pole(s) and zero(s) (which will be introduced in later 
chapters) in the complex s-plane. 

After starting up the DST, select the Modify and Enter option from the Poles/Zeros
menu. In order to enter the pole position for the RC-filter at (-1.2566, 0), enter the real 
part ( -1.2566) into the uppermost left box and the imaginary part (0.0) into the upper-
most right box as shown in Fig. A 2.2. Enter a 1.0 for the scale factor in the bottom box. 
Finally accept the input either by using the OK or the Apply button. The difference 
between these two is merely that the OK button closes the window after accepting the 
input while the Apply button leaves is open for further input. 

Fig. A 2.2 How to enter the pole position for Problem 2.3 into the Modify and Enter Poles/Zero
panel of the DST.

After you entered the pole into the DST, you can visualize its position within the com-
plex s-plane by using the Map option from the Poles/Zeros menu (Fig. A 2.3). 
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Fig. A 2.3 Pole position of RC-filter from Problem 2.3 within the complex s-plane as calculated 
with DST.

The corresponding frequency response can be viewed using the Show Response menu 
from the DST main window using the option Frequency Response -> Amplitude-> lin-
lin (Fig. A 2.4). 

Fig. A 2.4 Frequency response function (amplitude only) for the pole position shown in Fig. A 
2.3.

Note: Although the plot in Fig. A 2.4 shows a continuous curve, it is actually a discrete 
approximation of the continuous frequency response function. The details of the underly-
ing relationship will be explained in detail in chapter 7 “From infinitely continuous to 
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finite discrete”. At this point it is sufficient to know that the internal sampling frequency 
for the calculation of the frequency response function can be modified in the Setup menu. 
For reasons which are explained in chapter 7, the frequency band which is plotted ranges 
from 0 to 1/2 of the internal sampling frequency. 

Solution 2.4 The balance at time t nT T+= : 

 y nT T+( ) y nT( ) αy nT( ) αx nT( ) x nT( )+ + +=

y nT( ) αy nT( ) α 1+( ) x nT( )⋅+ +=

y nT T+( ) y nT( )– αy nT( ) α 1+( ) x nT( )⋅+=

(2.4-1)

(2.4-2)

 (divide by T) (2.4-3)

y nT T+( ) y nT( )–
T

-------------------------------------------- α
T
---y nT( ) α 1+( )

T
------------------ x nT( )⋅+= (2.4-4)

Next, replace the difference quotient by the derivative and nT by t:

y· t( ) α
T
---y t( )– α 1+( )

T
------------------ x t( )⋅= (2.4-5)

Taking the Laplace transform yields

s Y s( ) α
T
--- Y s( )⋅–⋅ α 1+

T
------------- X s( )⋅=

s α
T
---–⎝ ⎠

⎛ ⎞ Y s( )⋅ α 1+
T

------------- X s( )⋅=

T s( ) Y s( )
X s( )
----------- α 1+

T
------------- 1

s α
T
---–

------------⋅= =

(2.4-6)

(2.4-7)

(2.4-8)

From the equation above we see that a pole exists at s α T⁄=  

The corresponding impulse response becomes: α 1+
T

------------- e
α
T
--- t⋅

⋅  

From the positive exponent we see that the impulse response is unstable! While this is 
normally an unwanted feature, for a checking account it is just was we expect! 
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Chapter 3  

Solution 3.1 In order to obtain an internal sampling frequency of 100 Hz and a window 
length of 2048 points as recommended in Problem 3.1, these values have to be entered 
into the Setup menu (Modify option). For the spike position of the impulse response enter 
a value of 1024 to obtain a centered spike. To finally accept the input, you have to use 
either the OK or the Accept button. For part a) select the Modify and Enter option from 
the Poles/Zeros menu and enter the real and imaginary parts of each pole position on a 
separate line of the uppermost input boxes as shown in Fig. A 3.1.

Fig. A 3.1 Pole/Zero input panel for Problem 3.1a).

The corresponding impulse response function can be viewed using the Impulse Response
option from the Show Response menu of the DST (Fig. A 3.2). 

Fig. A 3.2 Impulse response function for Problem 3.1a).
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For Problem 3.1b), one pole falls into the left half of the s-plane while the other is 
located in the rigth half. The input for the corresponding pole positions is shown in Fig. 
A 3.3.

Fig. A 3.3 Pole position input panel for Problem 3.1b).

Fig. A 3.4 displays the corresponding pole map (option Map from the Poles/Zeros
menu).

Fig. A 3.4 Pole map for Problem 3.1b).

The resulting impulse response shows a signal symmetric to the position of the input 
spike Fig. A 3.5.
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Fig. A 3.5 Impulse response function for Problem 3.1b).

Finally, if the two poles are both put into the right half s-plane - Problem 3.1c) - the 
resulting impulse response function is a left-sided signal as shown in Fig. A 3.6. 

Fig. A 3.6 Impulse response function for Problem 3.1c).

Hence, the resulting impulse response function will be a) right-sided, b) two-sided, and 
c) left sided which can be understood from the arguments in chapter 3.1. The amplitude 
portion of the frequency response function is identical in all three cases while the phase 
response differs. 

With respect to Problem 2.3, the slope of the amplitude response is steeper by 20dB/dec-
ade since an additional pole is present. 
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Solution 3.2 Since the pole and the zero become symmetrical to the imaginary axis, the 
pole vectors and zero vectors are always of equal length. Hence their ratio is always con-
stant. It follows that the amplitude response is the same for all frequencies, characteristic 
of an allpass filter. Fig. A 3.7 shows the pole/zero distribution (a) and the corresponding 
impulse response function (b).

a) b)

 

Fig. A 3.7 a) Pole/zero distribution and b) input impulse function of the allpass filter of Problem 
3.2. The amplitude part of the frequency reponse is constant for all frequencies (not shown).

Solution 3.3 a) A general transfer function F(s) will be described by poles and zeros. 
Taking the inverse, 1/F(s) causes all poles to become zeros and zeros to become poles. 
For a minimum phase system, all the poles and zeros of the transfer function F(s) are on 
the left half s-plane. This will not change for the inverse system. Hence, the inverse sys-
tem will also be minimum phase and therefore stable. b) The poles and zeros of a general 
mixed phase system with zeros on either half-plane can always be expanded into two 
systems. The allpass is constructed by taking all right half-plane zeros and adding sym-
metric poles. The minimum phase system is constructed by taking all poles (which have 
to be in the left half- plane anyway for stability reasons) and adding zeros where the all-
pass system had added poles for symmetry reasons. On multiplication of the two transfer 
functions these additional poles and zeros will cancel (Fig. A 3.8).
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Fig. A 3.8  Separating a mixed phase system into a minimum phase system and an allpass.

Solution 3.4 Since the transfer function for Problem 3.1b has a pole on either side of the 
imaginary axis, we need to cancel the right-sided pole by a zero. In order not to change 
the amplitude characteristic, we have to do this with an allpass filter whose poles and 
zeros are symmetrical to the imaginary axis. The filter we need must have a zero at 
(+1.2566, 0) and a pole at (-1.2566, 0), which is exactly the allpass from Problem 3.2. 
The poles and zeros of the filter have to be added to the poles and zeros of the original 
system. Therefore, the filtered system will have two poles at (-1.2566, 0), one at (1.2566, 
0), and a zero at (1.2566, 0) as shown in Fig. A 3.9.
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a) b)

c)

Fig. A 3.9 Poles and Zeros input menu in DST (a), corresponding poles and zeros map (b), and 
impulse response function of the filtered system of Problem 3.1b (c). The internal sampling fre-
quency in DST was set to 100 Hz (Setup menu). 

Solution 3.5 For this exercise, an internal sampling frequency of 20 Hz is recommended 
(Modify option in the Setup menu) in DST. First, select the Modify and Enter option from 
the Poles/Zeros menu and enter the real and imaginary parts of the pole and zero posi-
tion. Fig. A 3.10 displays the pole/zero map and the amplitude part of the corresponding 
frequency response function. 
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a)

b)

Fig. A 3.10 Pole/zero map (a) and amplitude part of the frequency response function (b) for a sys-
tem consisting of a pole at (-6.28318, 0.0) and a zero at (0.628318, 0.0). Fig. A 3.10 was created 
using DST with an internal sampling frequency of 20 Hz and 2048 points for the FFT (Setup
menu). 

From the pole and zero positions we expect corner frequencies at f1 0,1=  Hz and at 

f2 1=  Hz, respectively. We can see that the frequency response function starts out con-

stant, increases by 20 db/decade at f1  then decreases by 20 dB/decade at f2 .

Solution 3.6 Start out with the double pole at (-1.2566, 0). For the successive steps, the 
pole positions would be p1 2, 1,2566 α j αsin+cos( )–=  with α  being incremented 

from 15o  to 75o  in steps of 15o (plus α 85o= , α  is measured clockwise from the 
negative real s-axis). 
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The corresponding pole positions are given below:

 [ o ] pole position

0o 1,2566– j0,0±

15o 1,21378– j0,325232±

30o 1,08825– j0,6283±

45o 0,88855– j0,88855±

60o 0,6283– j1,08825±

75o 0,325232– j1,21378±

85o 0,10952– j1,25182±

Below, the resulting impulse response functions are shown for 30o, 60o, and 85o (Fig. A 
3.11 - Fig. A 3.13).

a)

b)

c)

Fig. A 3.11  Pole positions (a), impulse response (b) and frequency response (c) for a system with 
a conjugate complex pole pair with the pole positions at an angle of 30o from the real axis of the s-
plane. The internal sampling frequency in DST was 20 Hz, the window length 2048 points, and the 
spike position for the impulse response1024 (Setup menu).
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a)

b)

c)

Fig. A 3.12 Pole positions (a), impulse response (b), and frequency response (c) for a system with 
a conjugate complex pole pair with the pole positions at an angle of 60o from the real axis of the s-
plane. 

a) 

b)

c)

Fig. A 3.13 Pole positions (a), impulse response (b), and frequency response (c) for a system with 
a conjugate complex pole pair with the pole positions at an angle of 85o from the real axis of the s-
plane.
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As the poles get closer to the imaginary axis, there are more oscillations in the impulse 
response. On the other hand when the poles are farther from the imaginary axis, the 
oscillations are more strongly damped. Notice that the spectrum changes significantly 
only near the corner frequency, not at the high and low ends of the spectrum. 

Solution 3.7 In Problem 3.6 we have seen that the amplitude part of the frequency 
response functions shows a strong peak if the poles were close to the imaginary axis. 
Hence, zeros close to the imaginary axis will correspond to strong selective suppression 
which is what we need. Therefore, we need to put zeros on or very close to the imaginary 
axis. In order to sharpen the notch, we also have to put poles close to the zeros, cancel-
ling their effect for frequencies away from the notch frequency. One solution is shown 
below (Fig. A 3.14).

a) b)

c)

Fig. A 3.14 Poles and Zeros input menu in DST (a), corresponding poles/zeros map (b), and 
amplitude frequency response function for a notch filter at 6.25 Hz.The corner frequency corre-
sponding to the chosen pole position was 6.275 Hz, the corner frequency corresponding to the the 
chosen zero positions 6.25 Hz.The internal sampling frequency in DST was 20 Hz, the window 
length 2048 points, and the spike position for the impulse response 1024 (Setup menu). 
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Solution 3.8 Within DST, the frequency response function of Problem 3.8 can be mod-
eled by poles and zeros entered via the Modify and Enter option of the Poles/Zeros
menu. First select problem3.8 from the Load Response to Fit option of the Poles/Zeros
menu to display the frequency response function shown in Fig. 3.4. Next, estimate the 
different slopes and determine the number of poles and zeros which are needed to model 
them. One reasonable interpretation is sketched in Fig. A 3.15. Next, try to find the cor-
ner frequencies at which the changes in slope occur (here 0.05 Hz and 5 Hz). 

3 zeros 

2 poles
7 poles

ω3∼

(in origin)

ω∼

(corresp. to 0.05 Hz)
(corresp. to 5 Hz)

ω 6–∼

Fig. A 3.15  Frequency response function (amplitude) with an ’unknown’ pole - zero distribution 
from Problem 3.8. 

Poles corresponding to the first corner frequency at 0.05 Hz have to be located either on 
the negative real axis of the s-plane at a distance of 0.31416 from the origin or occur in 

pairs defined by p1 2,
0,5Hz 0,31416 α j αsin±cos( )⋅–=  with α  between 0 and 90o. If 

we choose 45o as a trial value, we obtain -0.2221 for the real part and ± 0.2221 for the 
imaginary part.
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Poles corresponding to the second corner frequency at 5 Hz on the other hand have to be 
located either on the negative real axis at a distance of 31.416 from the origin or occur in 

pairs defined by p1 2,
5Hz 31,416 α j± αsincos( )⋅–=  with α  between 0 and 90o. If we 

put 1 pole on the negative real axis at (-31.416, 0) we are left with six poles to distribute 
as complex conjugate pairs. If we arbitrarily choose α  to be 25, 50, and 75o, we obtain 
the following pole positions: 

(-0.2221, 0.2221) 
(-0.2221, -0.2221) 
(-28.473, 13.277) 
(-28.473, -13.277) 
(-20.194, 24.066) 
(-20.194, -24.066) 
(-8.131, 30.346) 
(-8.131, -30.346) 
(-31.416, 0) 
 
This is displayed below (Fig. A 3.16). 

Fig. A 3.16 Trial pole/zero position to match the amplitude frequency response function of Prob-
lem 3.8.

The corresponding amplitude frequency response function (not shown) matches the 
shape of the frequency response function shown in Fig. A 3.15 fairly well visually. The 

amplitude values, however, are too low by an approximate factor of 2,5 1010⋅ . This can 
be adjusted by entering a scale factor of 2.5e10 in the poles and zeros input panel of 
DST. 
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Hint: For practical reasons regarding DST it is advisable to start out with the poles close 
to the origin and add the more distant poles only after the shape of the frequency 
response function has been matched in the low frequency range.

The resulting frequency response function now matches very closely the one given for 
Problem 3.8 (Fig. A 3.17). 

Fig. A 3.17 Frequency response function of Problem 3.8 (upper curve) and frequency response 
function generated from the poles and zeros shown in Fig. A 3.16 with a scaling factor of 2.5e10.

At the corner frequency of 5 Hz, the frequency response function of Problem 3.8 has 
slightly higher amplitudes and shows a sharper change of slopes with respect to the trial 
frequency response function. This difference can be reduced by shifting some of the 
poles of the trial response closer to the imaginary axis to obtain a more "resonant" behav-
iour at that frequency.
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The real distribution of poles and zeros for the frequency response function of Problem 
3.8 is given below. It describes the frequency response function of the GRF array in SE 
Germany. 

Poles:
(-0.2221, 0.2221) 
(-0.2221, -0.2221) 
(-7.0058, 30.6248) 
(-7.0058, -30.6248) 
(-19.5721, 24.5742) 
(-19.5721, -24.5742) 
(-28.3058, 13.6288) 
(-28.3058, -13.6288) 
(-31.4159, 0.0) 
Zeros: 
(0.0, 0.0) 
(0.0, 0.0) 
(0.0, 0.0) 
Scale factor:
2.49059e10

For the generation of Fig. A 3.15 - Fig. A 3.17 within DST, an internal sampling fre-
quency of 20 Hz and a window length of 2048 points was used.

Chapter 4  

Solution 4.1 The time derivative of (4.26) is

dxr t( )
dt

-------------- εx– r0e ε– t c1 ω0
2 ε2– t( )sin c2 ω0

2 ε2– t( )cos+( )=

xr0e ε– tc1 ω0
2 ε2– ω0

2 ε2– t( )cos+

x– r0e ε– tc2 ω0
2 ε2– ω0

2 ε2– t( )sin

(4.1-1)

With 
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c3 c1ε c2 ω0
2 ε2–+( )–= (4.1-2)

and 

c4 c2ε c1– ω0
2 ε2–( )–=  (4.1-3)

we obtain 

dxr t( )
dt

-------------- xr0e ε– t c3 ω0
2 ε2– t( )sin c4 ω0

2 ε2– t( )cos+( )= (4.1-4)

As for the displacement seismometer, the amplitude ratio of two consecutive maxima or 
minima are solely determined by the exponential term. Therefore, equations (4.27) and 
(4.28) are valid for the determination of the damping constant of seismometers with 
velocity transducers as well.

Solution 4.2 From Fig. 4.4 we can directly read the values of the first two consecutive 
peak amplitudes which are: a1 0,0869349= , the value of the maximum and 

a2 0,014175– 0,014175= = , the value of the minimum of the calibration signal. 
Therefore, we obtain 

a1
a2
----- 6,13297=⎝ ⎠

⎛ ⎞ Λ
2
----⇒ 1,81368= (4.2-1)

From Λ 3,6276=  we obtain h = 0.5. From Fig. 4.4 we measure the period from the sec-
ond zero-crossing as T 1,15sec≈  (the exact value would be 1.15470054). This yields 
f0 1Hz= . 

Solution 4.3 The displacement impulse response is the inverse Fourier transform of:

T jω( ) Output jω( )
Inputdisp jω( )
----------------------------------= (4.3-1)

Now let us examine the input signal, a step function in acceleration, which is equivalent 
to the integral of a spike. Hence, by equivalence between integration in the time domain 



228 Appendix 
and division by jω  in the frequency domain, the frequency response of the input signal 
in acceleration is:

Inputacc jω( ) 1
jω
------ 1⋅= (4.3-2)

with 1 being the frequency response of an impulse (here in acceleration). In order to 
obtain the input signal in displacement, the input signal in acceleration has to be inte-
grated twice. This corresponds to two times division by jω :

Inputdisp jω( ) 1
jω
------⎝ ⎠

⎛ ⎞ 2
Inputacc jω( )⋅ 1

jω
------⎝ ⎠

⎛ ⎞ 3
= = (4.3-3)

Therefore, 

T jω( )
Outputdisp jω( )
Inputdisp jω( )

--------------------------------------- 1 1
jω
------⎝ ⎠

⎛ ⎞ 3
⁄= = (4.3-4)

which becomes

T jω( ) jω( )3 Outputvel jω( )⋅= (4.3-5)

In the time domain, multiplication with jω( )3  corresponds to triple differentiation. 
Since high frequency noise will be greatly enhanced by differentiation, this explains why 
this approach to obtaining the impulse response is often impractical. 
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Solution 4.4 The pole positions for the three different damping factors are:

h = 0.25: -1.5708 ±  j 6.0837 

h = 0.5: -3.14159 ±  j 5.4414 

 h = 0.62: -3.89557 ±  j 4.9298

The corresponding pole/zero maps, impulse responses and amplitude parts of the fre-
quency response functions for these damping values are shown in Fig. A 4.1.

Fig. A 4.1  Pole/zero maps (left column), impulse response functions (center column) and ampli-
tude part of the frequency response functions (right columns) for a displacement seismometer with 
damping factors 0.25, 0.5, and 0.62 (from top to bottom). The internal sampling frequency in DST 
was set to 100 Hz (Setup menu).

You might notice some small precursory oscillations in the impulse response functions in 
Fig. A 4.1. The origin of this effect is discussed in detail in chapter 10.2.4.
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Solution 4.5 The output signal must be differentiated. This, however, corresponds to 
multiplication of the transfer function with s, a first degree polynomial with a single zero 
at the origin. Hence, in order to simulate the output of an electrodynamic system, simply 
add a zero at the origin to the transfer function. For the damping factor h = 0.62, the 
resulting amplitude frequency response is shown in Fig. A 4.2.

Fig. A 4.2 Amplitude frequency response function for a 1 Hz velocity seismometer.

Chapter 5   

Solution 5.1 First set the internal sampling frequency in DST to 1024 Hz and the window 
length to 2048 points (Modify option of the Setup menu). Next, generate the signals to be 
discretized using the Sine/Cosine option of the Test Signals menu. For the amplitude A
and the phase PHI of the signal keep the value of 1 and 0, respectively. Start out with a 
signal frequency of 1 Hz and discretize and reconstruct this signal using a discretization 
frequency of 10 Hz. The result should agree with Fig. 5.2 - Fig. 5.4. The dominant fre-
quency of the output signal can be easily obtained by measuring the dominant signal 
period on the DST screen in seconds and taking the reciprocal value. For the 1 Hz input 
signal the output signal frequency is 1 Hz also. Read the maximum signal amplitude of 
the output signal from the screen and enter input frequency, output frequency and maxi-
mum output amplitude into Table A 5.1.
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Table A 5.1 Corresponding input frequencies, output frequencies and output amplitudes  
                     for a discretization frequency of 10 Hz.

Signal 
frequency 

“input signal” 
[Hz]

Signal frequency 
“output signal” [Hz]

Signal amplitude (maximum) 
“output signal”

1 1 1≈

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20



232 Appendix 
Next, perform the same procedure with input signal frequencies from 2 - 20 Hz in steps 
of 1 Hz and fill in all entries in Table A 5.1.

For the interpretation imagine the "frequency band" as a band folded at 1/2 of the sam-
pling frequency (folding frequency) and connect each input frequency with the corre-
sponding output (alias-) frequency. As can be seen in Fig. A 5.1 the output frequencies 
can easily be obtained graphically by vertical projection from a particular input fre-
quency on the "frequency band" down to the region between zero and the folding fre-
quency. 

0 Hz 5 Hz (folding frequency)

10 Hz

15 Hz

20 Hz

Frequency Band

x
x

x
x

x
x

x
x

x
x

x
x

1 2 3 4

6
7

8
9

11
12

13
14

16
17

1819

(discretization 
frequency)

Fig. A 5.1 Graphical illustration of the alias effect.

Solution 5.2 For a discretization frequency of 10 Hz, the reconstruction breaks down for 
frequencies around 5 Hz. For exactly 5 Hz, it strongly depends on the value of the phase 
angle of the continuous signal, if the discretization results in non-zero values. For a 
phase angle of exactly zero, the signal is discretized exactly at the zero crossings. Hence 
it cannot be distinguished from a zero signal. Therefore, for a unique reconstruction the 
input signals have to be below 1/2 of 10 Hz (= 5 Hz).

Solution 5.3 The aliasing frequency corresponding to 18.5 Hz and a sampling frequency 
of 10 Hz would be 1.5 Hz (Fig. A 5.2).
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0 Hz 5 Hz 

10 Hz

15 Hz

20 Hz

X

1.5 Hz

aliasing

18.5 Hz

Frequency Band

Fig. A 5.2 Graphical determination of the alias frequency for a signal frequency of 18.5 Hz and a 
discretization frequency of 10 Hz..

Chapter 6  

Solution 6.1 The Wood-Anderson magnitude is defined as 
MWA 10 A( ) 10 A0( )log–log=  with A  the amplitude [in mm] measured on a Wood-

Anderson displacement instrument and 10 A0( )log–  the distance correction which is 

exactly 3 for 100 km. The theoretical trace amplitude for a MWA 0=  earthquake on this 

instrument will be AMWA 0= 100 3– 0,001= = mm. For the magnitude 6 earthquake 

this value will be AMWA 0= 106 3– 1000= = mm. Hence the dynamic range needed is 

at least 20 106( )log⋅ 120=  dB (20 bits). 

Solution 6.2 The maximum number we can express with 16 bit is 216 1– . For a gain 
ranging ADC with 8 bit for the gain and 8 bit for the mantissa we can express the maxi-

mum number 28 1–( ) 2 28 1–( )⋅ . Therefore, with the particular gain ranging setting we 
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increase the dynamic range by the factor

28 1–( ) 2 28 1–( )⋅

216 1–( )
------------------------------------------ 2,25276 1074⋅= . 

Expressed in the decibel scale, this would yield an improvement of 1487  dB. Notice that 
this is a fictitious improvement since on the other hand, the loss of 8 bit of resolution 
would be unacceptable in most practical applications. 

Solution 6.3 First, set the internal sampling frequency in DST to 100 Hz and the window 
length to 512 points (Modify option of the Setup menu). Next, generate the signal to be 
discretized using the Spike(s) option of the Test Signals menu. For the spike position 
enter a value of 256 to center the spike in the middle of the window. For the amplitude 
enter a value of 100. Subsequently integrate this signal (Utilitities -> Integration) to pro-
duce a centered step funtion with a step amplitude of 1. Next, apply delta modulation 
(Utilities-> Delta Modulation) using a quantum value (LSB ) of 0.01 to obtain the fol-
lowing picture

Fig. A 6.1 Demonstration of slope overload and granular noise during delta modulation.
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For the chosen parameters, the predicted input signal is unable to follow the rapid rise of 
the actual input signal. This effect is called slope overload. For the flat portions of the 
input signal, the predicted input signal oscillates around the actual input signal causing 
granular noise.

Solution 6.4 In Fig. A 6.2 the performance of plain delta modulation is compared to delta 
modulation of the integrated signal omitting the integration in the demodulation part. 

a) b)

c) d)

e) f)

Fig. A 6.2 Delta modulation and demodulation of a sinusoidal input signal with integration per-
formed during demodulation (a, c, e) or before modulation (b, d, f). 
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The left panel in Fig. A 6.2 shows the sinusoidal input signal as defined in Problem 6.4
(a), the comparison of the actual input signal and predicted input signal (c), and the 
demodulated signal (e). The right hand panel shows in frame (b) the integrated sinusoid 
of Fig. A 6.2a), in frame (d) the comparison of the corresponding actual input signal and 
predicted input signal, and finally in frame (f) the low pass filtered modulator output sig-
nal. In the latter case the LSB value for the modulation of the integrated signal was 
reduced to 0.01 to account for the smaller maximum peak to peak amplitude. For the 
lowpass filter, in both cases a Butterworth filter with a corner frequency of 4 Hz and 1 
section was chosen (Utilities -> Butterworth Filter -> Lowpass). As can be seen in Fig. 
A 6.2 the integration can be done either before modulation or before final lowpass filter-
ing without changing the result. This could have been guessed already from the fact that 
integration is a linear operation. 

Solution 6.5 First set the internal sampling frequency in DST to 5120 Hz and the window 
length to 10240 points (Modify option of the Setup menu). Next, generate the 1 Hz sinu-
soidal signal to be discretized using the Sine/Cosine option of the Test Signals menu. For 
the amplitude A and the phase PHI of the signal take a value of 1 and 0, respectively. Use 
the Sigma Delta Modulation option from the Utilities menu of DST using a LSB of e. g. 
1.2. The resulting trace will completely fill the screen. The final sampling frequency is 
generally reached in several stages. Here, use the Decimation Filtering option from the 
Utilities menu with a decimation ratio of 16 (resampling turned on) for the first stage. 
For the second stage use a decimation ratio of 4. Original sinusoid and resulting resam-
pled trace are shown in Fig. A 6.3.

Fig. A 6.3 Sigma-delta modulation simulation using DST. The left panel shows the input trace 
while the right panel displays the resulting resampled trace after sigma-delat modulation and two 
stages of decimation filtering. 
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Chapter 7  

Solution 7.1 Since the signal is assumed to be zero outside the time window 0 t NT<≤ , 

the Fourier transform becomes X jω( ) x t( )e jωt– dt
0

NT

∫= . If we approximate the inte-

gral by a finite sum using the rectangular rule we obtain:

x t( )e jωt– dt
0

NT

∫ T x nT[ ]e jωnT–

n 0=

N 1–

∑⋅≈ (7.1-1)

 For ω ωk k 2π
TN
-------⋅= =  the right hand side becomes

T x nT[ ]e
j k 2π

TN-------⋅⎝ ⎠
⎛ ⎞ nT–

n 0=

N 1–

∑⋅ T x n[ ]e
j k 2π

N------⋅⎝ ⎠
⎛ ⎞ n–

n 0=

N 1–

∑⋅=

T X̃ k[ ]⋅=

X̃ k[ ]

(7.1-2)

 is the DFT. Therefore,

X jω( ) ω ωk= x t( )e jωkt– dt
0

NT

∫ T X̃ k[ ]⋅≈= (7.1-3)

Solution 7.2 Since the inverse Fourier transform evaluates the inverse z-transform on the 
unit circle, this means that the banded convergence region is chosen. Hence, it will corre-
spond to a two-sided impulse response.

Solution 7.3 a) positive time shifts n0 will cause a multiplication of the z-transform with 

a term z n0–  which has a pole of order n0  a at the origin (1 0n0⁄ ). b) negative time 

shifts n0 will cause a multiplication of the z-transform with a term zn0  which has a pole 
at infinity. Hence, depending on the sign of the shift, time shifts add poles at either the 
origin or at infinity of the z-plane.
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Solution 7.4 Let’s assume we have two sequences with 1024 samples and a spike at posi-
tion 1024 in each of them. If we convolve the two sequences in the time domain we 
expect the result to be a spike at position 2047. Hence, we have to pad up to this sample. 
If we have two sequences of different length, we have to pad both sequences up to one 
point less than twice the length of the longer sequence.

Chapter 8  

Solution 8.1 In order to see how roots on the unit circle affect the properties of the 
impulse response of FIR filters, we first consider an impulse response function of length 

M 1+ 3= . Its z-transform in the notation of (8.18) corresponds to a simple quadratic

q pz z2+ +  with the two roots z1 2,
p
2
---– p2

4
----- q–± re jΦ±= =  for which the fol-

lowing two properties hold: z1 z2+ p–=  and z1 z2⋅ q= .

Since the wavelet is defined by the triplet (q, p, 1), we need to determine q and p. For 

complex conjugate roots re jφ±  it follows that q z1 z2⋅ rejφ re jφ–⋅ r2= = = . Using 

Euler’s formulas, we deduce that p– z1 z2+ rejφ re jφ–+ 2r Φcos= = = . Hence, the 
discrete finite impulse response for a system with the two complex conjugate roots 

re jφ±  will consist of the triplet

q p 1, ,( ) r2 2r φ 1,cos–,( )= (8.1-1)

If the roots are on the unit circle ( r 1= ), the result will be a symmetric impulse 
response. This will also be the case for higher order systems which only contain zeros on 
the unit circle since the convolution of symmetric impulse response functions remains 
symmetric. Because of this symmetry, one could think that in the context of removing all 
noncausal effects roots on the unit circle can be corrected for. However, this is not the 
case since a system with only roots on the unit circle has only a single waveform repre-
sentation for the given amplitude spectrum. To see this we again consider an arbitrary 

second order system A1 z( )  with the two complex conjugate roots z1 2, r1e jφ1±= . 

Replacing the poles or zeros of a transfer function by their complex conjugate recipro-
cals does not change the ’amplitude spectrum’ of the signal except for a constant scaling 
factor as we have already seen before. Therefore, the system A2 z( ) A1 1 z⁄( )=  with 
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the roots z3 4, 1 r1⁄ e jφ1+−⋅=  has the same amplitude spectrum as A1 z( ) . In the general 

case in which the roots are assumed to be located away from the unit circle 
( r1 1 r2 1≠,≠ ) the waveforms of A1 z( )  and A2 z( )  will be different (cf. (8.1-1)). 

They are obtained by setting r  and φ  in (8.1-1) to r1  and φ1  and to 1 r1⁄  and φ1–  for 
the first and the second representation, respectively. These are the only two waveform 
representations for the amplitude spectrum of A1 z( ) . One could naively argue that 

replacing only a single root by its reciprocal would not affect the amplitude spectrum as 
well. However, the roots of any real sequence of a second order system must always 
occur as a pair of complex conjugate roots, which would be violated in this case.

For higher order systems the number of wavelets with the same amplitude spectrum 
increases but this is irrelevant in the context of the present argument. Now we consider a 
second order system in which the roots are located directly on the unit circle. In this case, 
because r1 1=  the root pairs of A1 z( )  and A2 z( )  become identical 

z1 2, z3 4, e jΦ±= = . Consequently, the system has only a single waveform repre-

sentation. The same argument can be made for higher order systems. 

In the context of removing the acausal FIR filter response we can therefore ignore the 
contribution of roots on the unit circle (UC roots) because the corresponding waveform 
component will not be changed by the correction filter process. In effect, this is equiva-
lent to treating the roots on the unit circle as belonging to the minimum phase compo-
nent. 

Solution 8.2 Load the data trace example20HZ into DST using the File -> Open File with 
Data Trace option from the main menu. The file is found in subdirectory FIR20HZ. 
Next, use option Interpolate in the Utilities menu with an interpolation factor of 2 to 
obtain an interpolated trace sampled at 40 Hz. Subsequently use option FIR2CAUS in the 
Utilities menu with the correction filter file quant40Hz.prt. If you choose 0 for the 
number of zeros to pre/append/ to the filtered trace and select correction for linear phase, 
the resulting "corrected" trace is shown in Fig. A 8.1. Option Ok directly results in the 
corrected trace. If you choose Apply for the FIR2CAUS option, you will see both the 
uncorrected and the corrected trace displayed together. Using the left mouse button, you 
can zoom in on the P-wave onset as shown in Fig. A 8.1.



240 Appendix 
Fig. A 8.1 Removing the maximum phase component of the FIR filter response from the example 
data trace example20HZ. The top trace shows the P- wave onset of the uncorrected trace while 
the bottom trace shows the corrected signal.

Chapter 9  

Solution 9.1 In order to comply with the sampling theorem, digital recording systems 
must have an anti-alias filter for which the transfer function has to have zeros at the 
Nyquist frequency. Therefore, in addition to the irregularity at zero frequency discussed 
in the text, an irregularity problem will show up at the Nyquist frequency. 

Solution 9.2  Since a minimum phase system Tact
min z( )  has all its poles and zeros inside 

of the unit circle, this is true also for the inverse system 1 Tact
min z( )⁄ . The poles of 

Tact
min z( )  have become zeros in 1 Tact

min z( )⁄  and vice versa. Hence, the inverse of a 

minimum phase system is always minimum phase as well. Since minimum phase sys-
tems are always stable (all poles are inside the unit circle since all singularities are inside 
the unit circle), minimum phase systems always have stable causal inverse systems. 
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Tact
max z( )     on the other hand as a maximum phase system has all its zeros outside the 

unit circle. These will become poles in 1 Tact
max z( )⁄  and as a consequence 1 Tact

max z( )⁄  
will not have a stable causal impulse response.

Solution 9.3 The continuous transfer function of the displacement seismometer is 

T s( ) s2

s2 2h1ω01s ω01
2+ +

------------------------------------------------= (9.3-1)

With frequency warping this becomes

T s( ) s2

s2 2h1ω'01s ω'01
2+ +

--------------------------------------------------= (9.3-2)

Replacing s  by 2 T⁄( ) 1 z 1––( )⋅ 1 z 1–+( )⁄  and ω'01  by 2 T⁄( ) ω01T 2⁄( )tan⋅  we 

obtain

Tsim z( )

1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

2h1 ω01
T
2
---⎝ ⎠

⎛ ⎞tan 1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

ω01
T
2
---⎝ ⎠

⎛ ⎞tan2++

------------------------------------------------------------------------------------------------------------------------------= (9.3-3)

Multiplying numerator and denominator by 1 z 1–+( )
2

 yields

Tsim z( )
1 z 1––( )

2

1 z 1––( )
2

2h1 ω01
T
2---⎝ ⎠

⎛ ⎞tan 1 z 1––( ) 1 z 1–+( ) ω01
T
2---⎝ ⎠

⎛ ⎞ 2
1 z 1–+( )

2
tan+ +

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= (9.3-4)

The numerator polynomial is simply 1 2z 1–– z 2–+ , hence we get b0 1= , b1 2–= , 

and b2 1= . We obtain the denominator polynomial by expanding the denominator in 

powers of z 1–  which becomes
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1 2z 1– z 2– 2h1 ω01T 2⁄( ) 2– h1 ω01T 2⁄( )z 2–tantan+ +–

ω01T 2⁄( )tan2 2 ω01T 2⁄( )tan2 z 1– ω01T 2⁄( )tan2 z 2–+ ++

=

1 2h1 ω01T 2⁄( ) ω01T 2⁄( )tan2+tan+

2– 2 ω01T 2⁄( )tan2+( ) z 1–⋅+

1 2h1– ω01T 2⁄( ) ω01T 2⁄( )tan2+( )tan( ) z 2–⋅+

(9.3-5)

Hence we obtain 

a0 1 2h1 ω01T 2⁄( ) ω01T 2⁄( )tan2+tan+=

a1 2– 2 ω01T 2⁄( )tan2+=

a2 1 2h1– ω01T 2⁄( ) ω01T 2⁄( )tan2+( )tan=

(9.3-6)

For ω01 2π 0,008333 Hz[ ]⋅ 0,052358= = , h1 0,707= , and T 0,05 s[ ]=  we 

finally get

a0 1,00185=

a1 2,0–=

a2 0,998151=

(9.3-7)

The performance of the filter is demonstrated in Fig. A 9.1.
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Fig. A 9.1 Modulus of the frequency response function of a hypothetical seismometer with 
h 0,707=  and ω 0,052358= . 

Fig. A 9.1 was created within DST evaluating the filter output signal y i[ ]  from the filter 
input signal x i[ ]  and the AR coefficients a k[ ] for k 0 N–=  and b l[ ]  for 
l 0 M–=  using following difference equation 

y i[ ] a k[ ]
a 0[ ]
----------- y i k–[ ]⋅⎝ ⎠

⎛ ⎞–
k 1=

N

∑
b l[ ]
a 0[ ]
----------- x i l–[ ]⋅

l 0=

M

∑+= (9.3-8)

First, the internal sampling frequency and the window length were set to 20 Hz and 4096 
points, respectively. Next, a spike test signal was created at position 100 with an ampli-
tude of 1 using the Test Signals -> Spike(s) option of DST. The resulting trace was fil-
tered using the Utilities -> Difference Equation option in DST with autoregressive 
coefficients 1.00185, -2.0, 0.998151 and moving average coefficients 1, -2, 1. The gain 
factor was left at 1.0 and the Filtering inverse option was left off. Finally, Fig. A 9.1 was 
obtained using the Utilities -> Spectrum -> Amplitude -> log-log option of DST.
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Solution 9.4 The continuous transfer function of the inverse filter is 

T 1– s( )
s2 2h1ω01s ω01

2+ +

s2------------------------------------------------= (9.4-1)

With the frequency warping this becomes

T 1– s( )
s2 2h1ω'01s ω'01

2+ +

s2--------------------------------------------------= (9.4-2)

Replacing s  by 2 T⁄( ) 1 z 1––( )⋅ 1 z 1–+( )⁄  and ω'01  by 2 T⁄( ) ω01T 2⁄( )tan⋅  we 

obtain

Tsim z( )

1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

2h1 ω01T 2⁄( )tan 1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

ω01T 2⁄( )tan2++

1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2------------------------------------------------------------------------------------------------------------------------------------------= (9.4-3)

Multiplying numerator and denominator by 1 z 1–+( )
2

 yields

Tsim z( )
1 z 1––( )

2
2h1 ω01T 2⁄( )tan 1 z 1––( ) 1 z 1–+( )+

1 z 1––( )
2--------------------------------------------------------------------------------------------------------------------=

ω01T 2⁄( )tan2 1 z 1–+( )
2

1 z 1––( )
2------------------------------------------------------------+

(9.4-4)

The common denominator polynomial is simply 1 2z 1–– z 2–+ , hence we get a0 1= , 

a1 2–= , and a2 1= . We obtain the numerator polynomial by expanding the numera-

tor in powers of z 1–  which becomes
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1 2z 1– z 2– 2h1 ω01T 2⁄( ) 2– h1 ω01T 2⁄( )z 2–tantan+ +–

ω01T 2⁄( )tan2 2 ω01T 2⁄( )tan2 z 1– ω01T 2⁄( )tan2 z 2–+ ++

=

1 2h1 ω01T 2⁄( ) ω01T 2⁄( )tan2+tan+

2– 2 ω01T 2⁄( )tan2+( ) z 1–⋅+

1 2h1– ω01T 2⁄( ) ω01T 2⁄( )tan2+( )tan( ) z 2–⋅+

(9.4-5)

Hence we obtain 

b0 1 2h1 ω01T 2⁄( ) ω01T 2⁄( )tan2+tan+=

b1 2– 2 ω01T 2⁄( )tan2+=

b2 1 2h1– ω01T 2⁄( ) ω01T 2⁄( )tan2+( )tan=

(9.4-6)

For ω01 2π 0,00833 Hz[ ]⋅ 0,052358= = , h1 0,707= , and T 0,05 s[ ]=  we 

finally get

b0 1,00185=

b1 2,0–=

b2 0,998151=

(9.4-7)

The performance of the filter is demonstrated in Fig. A 9.2.
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Fig. A 9.2  Result of applying a deconvolution filter to the hypothetical seismometer response 
with  h 0,707=  and ω 0,052358= shown in Fig. A 9.1. Displayed is the modulus of the resulting 
frequency response. The fact that the resulting frequency response is flat demonstrates the good 
performance of the deconvolution filter.

Solution 9.5 In this case, the continuous transfer function of inverse filter is 

T 1– s( )
s2 2h1ω01s ω01

2+ +

s3------------------------------------------------= (9.5-1)

With the frequency warping this becomes

T 1– s( )
s2 2h1ω'01s ω'01

2+ +

s3--------------------------------------------------= (9.5-2)

Replacing s  by 2 T⁄( ) 1 z 1––( )⋅ 1 z 1–+( )⁄  and ω'01  by 2 T⁄( ) ω01T 2⁄( )tan⋅  we 
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obtain

Tsim z( ) T
2
---

1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

2h1 ω01
T
2
---⎝ ⎠

⎛ ⎞tan 1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

ω01
T
2
---⎝ ⎠

⎛ ⎞tan2++

1 z 1––

1 z 1–+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 3------------------------------------------------------------------------------------------------------------------------------⋅= (9.5-3)

Multiplying numerator and denominator by 1 z 1–+( )
3

 yields

Tsim z( )

1 z 1––( )
2

1 z 1–+( )⋅

1 z 1––( )
3-------------------------------------------------- T

2
---⋅

2h1 ω01T 2⁄( )tan 1 z 1––( ) 1 z 1–+( )
2

1 z 1––( )
3---------------------------------------------------------------------------------------- T

2
---⋅+

=

ω01T 2⁄( )2 1 z 1–+( )
3

tan

1 z 1––( )
3------------------------------------------------------------ T

2
---⋅+

(9.5-4)

The common denominator polynomial is simply 1 3z 1–– 3z 2– z 3––+ , hence we get 
a0 1= , a1 3–= , a2 3= and a3 1–= . We obtain the numerator polynomial by 

expanding the numerator in powers of z 1–  which becomes
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T 2⁄( ){1 z 1– z 2–– z 3–+–

2h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ 2h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ z 1– 2– h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ z 2– 2– h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ z 3–tantantan+tan+

ω01
T
2
---⎝ ⎠

⎛ ⎞tan2 3 ω01
T
2
---⎝ ⎠

⎛ ⎞tan2 z 1– 3 ω01
T
2
---⎝ ⎠

⎛ ⎞tan
2
z 2– ω01

T
2
---⎝ ⎠

⎛ ⎞tan2 z 3– }+ + ++

=

T 2⁄( ){1 2h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ ω01
T
2
---⎝ ⎠

⎛ ⎞tan2+tan+

1– 2h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ 3+tan ω01
T
2
---⎝ ⎠

⎛ ⎞tan2+⎝ ⎠
⎛ ⎞ z 1–⋅+

1– 2– h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ 3+tan ω01
T
2
---⎝ ⎠

⎛ ⎞tan2
⎝ ⎠
⎛ ⎞ z 2–⋅+

1 2h1– ω01
T
2
---⎝ ⎠

⎛ ⎞ ω01
T
2
---⎝ ⎠

⎛ ⎞tan2+tan⎝ ⎠
⎛ ⎞ z 3– }⋅+

(9.5-5)

Hence we obtain 

b0 T 2⁄ Th1 ω01
T
2
---⎝ ⎠

⎛ ⎞ T 2⁄( ) ω01
T
2
---⎝ ⎠

⎛ ⎞tan2+tan+=

b1 T 2⁄– Th1 ω01
T
2
---⎝ ⎠

⎛ ⎞ 1,5T( )+tan ω01
T
2
---⎝ ⎠

⎛ ⎞tan2+=

b2 T 2⁄– T– h1 ω01
T
2
---⎝ ⎠

⎛ ⎞ 1,5T( )+tan ω01
T
2
---⎝ ⎠

⎛ ⎞tan2=

b3 T 2⁄( ) Th1– ω01
T
2
---⎝ ⎠

⎛ ⎞ T 2⁄( ) ω01
T
2
---⎝ ⎠

⎛ ⎞tan2+tan=

(9.5-6)

For ω01 2π 0,00833 Hz[ ]⋅ 0,052358= = , h1 0,707= , and T 0,05 s[ ]=  we 

finally get

b0 0,0250463=

b1 0,0249536–=

b2 0,0250461–=

b3 0,0249538=

(9.5-7)
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The performance of the filter is demonstrated in Fig. A 9.3 with the P wave window of 
the vertical component record of the deep Bolivia earthquake of 94/06/09 recorded at 
station FUR of the German Regional Seismic Network. The data file 
FUR_940609.20HZ.Z is found in subdirectory FUR using the File -> Open File with 
Data Trace option from the main menu of DST. Here only the P wave onset is displayed.

.

Fig. A 9.3  P wave window of the vertical component record of the deep Bolivia earthquake of 
94/06/09 recorded at station FUR of the German Regional Seismic Network. The top trace shows 
the BB ’velocity’ record while the bottom trace shows the result of applying the deconvolution fil-
ter. 

Chapter 10  

Solution 10.1 These signals can be reproduced within DST by producing a spike test sig-
nal for an internal sampling frequency of 20 Hz and a trace length of 256 points and a 
spike of amplitude 1 at position 10. Trace 1 was produced by causal bandpass filtering 
the spike trace with a Butterworth bandpass consisting of 3 sections (6 poles) and corner 
frequencies at 0.4 and 1.5 Hz. Trace 2 corresponds to the spike trace filtered by a 6 pole 
Butterworth lowpass filter with a cut off frequency of 1.5 Hz. Trace 3 finally consists of 
a sinusoidal signal of 1 Hz signal frequency, amplitude of 1, and zero phase, again for 20 
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Hz sampling frequency and a trace length of 1024 points.

The frequency response function is defined by the following 9 poles:

-0.20762   0                                                                
-0.71256   1.03508                                                              
-0.71256   -1.03508                                                              
   -7.18     +17.42                                                                
   -7.18     -17.42                                                                
  -17.42    +7.18                                                                
  -17.42    -7.18                                                                
  -37.04    0                                                                
  -45.45    0                                                                

and 4 zeros at the origin. The corresponding GSE calibration file can be loaded into DST 
using the File -> Open File With GSE Calibration option from the main menu (file: 
pr10_1.cal). Looking at the amplitude frequency response function in Fig. A 10.1, we 
notice approximately three regions with different slope in the log-log plot. Outside of the 
central frequency band, roughly below 0.2 and above 2.5 Hz, the amplitude frequency 
response function decays rapidly, hence signals with frequencies outside this range are 
strongly attenuated while signals with frequencies between 0.2 and 2.5 Hz could be well 
recorded. With what we have learned about seismometer systems, we could expect that 
the frequencies of 0.2 and 2.5 Hz correspond to the eigenfrequency of the seismometer 
and the corner frequency of the anti-alias filter, respectively. This frequency band is 
commonly defined as the passband of the instrument. Within the passband, we see that 
the amplitude frequency response function is proportional to ω  so from the correspond-
ence between multiplication by jω  in the frequency domain and differentiation in the 
time domain we could expect that the frequency response function is that of an electro-
dynamic system. In this case, all signals falling completely within the passband would be 
expected to be differentiated. By comparing the spectra in Fig. 10.4 and the frequency 
response function in Fig. 10.5, we would expect this to happen for traces 1 and 3.



Solution to problems 251
ω∼

trace 1

trace 2

trace 3

instrument 
"passband"

frequency band appr. occupied by the signals: 

Fig. A 10.1  Amplitude frequency response function for Problem 10.1. 

The actual result for trace 1 is shown in Fig. A 10.2. The waveform of the filtered output 
signal is essentially identical to the scaled and differentiated input signals. Slight differ-
ences can be understood from the fact that the signal contains small amounts of energy 
outside the passband. 

Fig. A 10.2  The traces from left to right show the input signal trace 1 from Fig. 10.3, the output 
signal from filtering with the system displayed in Fig. A 10.1, and the differentiated input signal.
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Fig. A 10.3 The traces from left to right show the input signal trace 2 from Fig. 10.3, the output 
signal from filtering with the system displayed in Fig. A 10.1, and the differentiated input signal.

For trace 2 (Fig. A 10.3), the differences between the filtered trace and the differentiated 
trace are stronger since the input signal contains considerable amounts of energy outside 
the passband of the instrument (Fig. A 10.1).

Fig. A 10.4 The traces from left to right show the input signal trace 3 from Fig. 10.3, the output 
signal from filtering with the system displayed in Fig. A 10.1, and the differentiated input signal.

In Fig. A 10.4 it is shown how the fictitious instrument acts on a sinusoidal signal with 
1.0 Hz signal frequency. What we can observe nicely is that the output signal is again a 
sinusoid with the same frequency. This is an important result which relates to the eigen-
vector property of the harmonic functions for LTI systems. Only amplitude and phase are 
changed. However, we can also see that there is a phase shift between trace 2 and 3. 
Hence, for the monochromatic signal with a signal frequency completely within the 
region of the frequency response function where its modulus is proportional to ω , the 
output signal is not simply the differentiated signal which would show a phase shift to 
the input signal of 90o. If we calculate the phase shift for the given signal frequency of 1 
Hz from the pole and zero distribution using the techniques learned earlier, we obtain 
approximately 37o which clearly differs from 90o which we would expect for pure differ-
entiation.

How does this fit in with the fact that for the signal in Fig. A 10.4 the difference between 
the signal filtered with the instrument does not differ significantly from the differentiated 
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signal? The answer lies in the linear phase components of the frequency response func-
tion. Linear phase components do not cause any signal distortion but only a time shift of 
the output signal. With other words, we could also explain the phase shift seen for the 
monochromatic signal as being produced by a time shift and a differentiation. However, 
in order to test this hypothesis we would have to analyse the properties of the phase of 
the frequency response function in more detail. In this context, however, I only want to 
remind you that the circumstances under which it is justified to speak of a displacement- 
or a velocity system depend on a number of factors and that we should be careful not to 
use these terms sloppily. 

Solution 10.2  For a displacement frequency response function it would be counts/ dis-
placement, for a velocity frequency response function it would be counts/velocity, and 
counts/acceleration for an acceleration frequency response function respectively. 

For example for the displacement frequency response function, we have displacement as 
unit for the input signal, displacement per Hz for the spectrum, counts for the unit of the 
output signal and counts per Hz for the corresponding spectrum. Since the frequency 
response function is also defined as the Fourier spectrum of the output signal divided by 
the Fourier spectrum of the input signal, the unit is counts/displacement.

Solution 10.3 The velocity impulse response function is the inverse Fourier transform of:

Tvel jω( ) Output jω( )
Inputvel jω( )
--------------------------------= (10.3-1)

a) Displacement impulse response: What we need to know is the response of the system 
to an input signal given in displacement. By equivalence between differentiation in the 
time domain and multiplication with jω  in the frequency domain, the velocity input 
spectrum is related to the displacement input spectrum by

Inputvel jω( ) jω Inputdisp jω( )⋅= (10.3-2)

Hence

Tvel jω( ) Output jω( )
jω Inputdisp jω( )⋅
---------------------------------------------= (10.3-3)

and replacing Output jω( ) Inputdisp jω( )⁄  by Tdisp jω( )  we obtain

Tdisp jω( ) Output jω( )
Inputdisp jω( )
---------------------------------- Tvel jω( ) jω⋅= = (10.3-4)
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Hence, the displacement frequency response function can be obtained from the velocity 
frequency response function by multiplication with jω . Again, by equivalence between 
multiplication with jω  in the frequency domain and differentiation in the time domain, 
the displacement impulse response function is obtained from the velocity impulse 
response function by differentiation. 

b) Acceleration impulse response: By the same argument we obtain the acceleration fre-
quency response function from the velocity response function by division by jω . 
Finally, by equivalence between division by jω  in the frequency domain and integration 
in the time domain, the acceleration impulse response function can be obtained from the 
velocity impulse response function by integration.

Solution 10.4 We can directly use (10.7) with ω0 2π f0⋅=  = 0.0519657, h = 0.718, and 
G = 1500 [V/m/s] to obtain the velocity transfer function 

Tvel s( ) 1500 V m s⁄⁄[ ]– s2

s2 0,07462s 0,0027+ +
--------------------------------------------------------= (10.4-1)

From the discussion of Problem 10.3 we know that we obtain the displacement response 
function by multiplication with s . 

Tdisp s( ) 1500 V m⁄[ ]– s3

s2 0,07462s 0,0027+ +
--------------------------------------------------------= (10.4-2)

The unit of the scale factor in this case becomes [V/m]. We can also express the denomi-
nator polynomial by its roots (see equation (10.5)) which are given by equation (10.8)

( sp 1 2,( ) h h2 1–±( ) ω0⋅–= ). With the parameters given above we obtain

 sp 1, 2,( ) 0,718 0,696 j⋅±( ) 0,0519657⋅– 0,03731 0,03617 j⋅±( )–= =  and

Tdisp s( )

1500– V
m
---- .

s3

s 0,03731 j 0,03617⋅+ +( ) s 0,03731 j 0,03617⋅–+( )⋅
--------------------------------------------------------------------------------------------------------------------------------------

= (10.4-3)

The corresponding frequency response function is obtained by evaluating T s( )  on the 
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imaginary axis (s jω→ ).

Tdisp jω( )
1500– V

m
---- .

jω( )3

jω 0,03731 j 0,03617⋅+ +( ) jω 0,03731 j 0,03617⋅–+( )⋅
----------------------------------------------------------------------------------------------------------------------------------------------

= (10.4-4)

Solution 10.5 With an LSB of 2.5 µV  we obtain the 1V 0,4 106⋅=  counts. Hence 

Tdisp jω( )  has to be multiplied by 0,4 106⋅  to come out in counts and to be divided by 

109  to convert m  into nm . 

Tdisp jω( )
0,6– cts

nm
------- .

jω( )3

jω 0,03731 j 0,03617⋅+ +( ) jω 0,03731 j 0,03617⋅–+( )⋅
----------------------------------------------------------------------------------------------------------------------------------------------

= (10.5-1)

The shape of the modulus of the displacement frequency response function for this sys-
tem is shown in Fig. A 10.5.
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Fig. A 10.5 Displacement amplitude frequency response function for Problem 10.5. Amplitude in 
counts/nm.

Solution 10.6 As discussed in the context of Problem 10.3, the displacement frequency 
response function can be obtained from the velocity response function by multiplication 
with jω . Again, by equivalence between multiplication with jω  in the frequency 
domain and differentiation in the time domain, the displacement impulse response func-
tion is obtained from the velocity impulse response function by differentiation.

Here we want to go the other way, hence in order to obtain the velocity frequency 
response function, we have to either calculate the spectrum from the integrated displace-
ment impulse response function or divide the displacement frequency response function 
by jω . Another way is by removing a zero from the GSE calibration file describing the 
transfer function. The result is shown in Fig. A 10.6.
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Fig. A 10.6 Velocity amplitude frequency response function for Problem 10.6. Amplitudes in 
counts/nm/s.

Note that the plateau value is 0.6 counts/nm/s, which corresponds to the generator con-
stant expressed in counts1. 

Solution 10.7 The scale factor in equation (10.11) 

T jω( ) Tdisp jω( ) Cdisp

jω s0k–( )

k 1=

L

∏

jω spk–( )

k 1=

N

∏

-------------------------------------⋅ Cdisp Fdisp jω( )⋅= == (10.7-1)

must be chosen such that Tdisp jωcal( ) 1 g⁄ d= . 

Hence we obtain 1 gd⁄ Cdisp Fdisp jωcal( )⋅=    which yields

1. The systems discussed in Problem 10.4 to Problem 10.6 describes the stations 
of the German Regional Seismic Network (GRSN) as of June 1994.
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Cdisp 1 gd Fdisp jωcal( )⋅( )⁄= . (10.7-2)

Solution 10.8 In the context of the solution of Problem 10.7, we have seen that the scale 
factor Cdisp  is calculated as Cdisp 1 gd Fdisp jωcal( )⋅( )⁄= . Here, gd  was defined 

as gd Ai
disp Ao⁄= , with Ai

disp  the displacement amplitude of the input signal and Ao  
being the amplitude of the output signal in counts. If we are measuring the velocity 

amplitude of the input signal as in Fig. A 10.7, we get gv Ai
vel Ao⁄=  or in case of 

acceleration ga Ai
acc Ao⁄= .

.

INPUT OUTPUT

ground velocity in [nm/s] counts

Ao

RECORDING SYSTEM

Amplitude and
phase changeAi

vel

Fig. A 10.7  Sketch of a shaking table experiment to measure the calibration gain gv  at a given 
period.

However, for an harmonic signal at calibration frequency ωcal , we obtain 

Ai
acc ωcal Ai

vel⋅ ωcal
2 Ai

disp⋅= =  and Ai
vel ωcal Ai

disp⋅= . Therefore, we get 

gv
Ai

vel

Ao
----------

ωcal Ai
disp⋅

Ao
---------------------------- ωcal gd⋅= = =  and gd

gv
ωcal
----------=  for the relationship between gv  

and gd . Likewise, gd
ga

ωcal
2-----------= . As a consequence, we obtain for the scale factor
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Cdisp
1

gd F jωcal( )⋅
----------------------------------

ωcal
gv F jωcal( )⋅
----------------------------------

ωcal
2

ga F jωcal( )⋅
----------------------------------= = = (10.8-1)

Solution 10.9 Since the sensor is supposed to generate a voltage which is proportional to 
ground velocity for frequencies above 1 Hz, we have a system similar to that described in 
Solution 10.4 only with different parameters.   For G 100=  V/m/s, f0  = 1.0 Hz (ω0  = 
6.283), and h = 0.7 the velocity transfer function is

Tvel s( ) 100 V
m s⁄
----------– s2

s2 8,7964s 39,476+ +
-----------------------------------------------------= (10.9-1)

From the discussion of Problem 10.3 we know that we can calculate the displacement 
response function by multiplication with s

Tdisp s( ) 100 V
m
----– s3

s2 8,7964s 39,476+ +
-----------------------------------------------------= (10.9-2)

The unit of the scale factor in this case becomes [V/m]. We can express the denominator 
polynomial by its roots (see equation (10.5)) which are given by equation (10.8)

( sp 1 2,( ) h h2 1–±( ) ω0⋅–= ). With the parameters given above we obtain

sp 1, 2,( ) 0,7 j 0,71414⋅±( ) 6,283⋅– 4,398 j 4,487⋅±( )–= = (10.9-3)

As in Solution 10.4 we can use equation (10.5) with these 2 poles and three zeros at the 
origin and the fact that βL 100=  [V/m] and αN 1= , hence βL αN⁄( ) 100=  [V/m] 

in (10.5). However, since the signal is amplified by 250 before being fed into the A/D 
converter, we must be aware that the effective factor βL  is 100 250⋅ 2,5 104⋅= . For 

the frequency response function (evaluating T s( )  for s jω= ) relating output voltage 
and ground displacement we obtain 

Tdisp jω( )
2,5 104 V

m
---- .⋅–

jω( )3

jω 4,398 j 4,487⋅+ +( ) jω 4,398 j 4,487⋅–+( )⋅
----------------------------------------------------------------------------------------------------------------------

= (10.9-4)
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With an LSB of 1 µV  we obtain 1V 106=  counts. Hence Tdisp jω( )  has to be multi-

plied by 106  to come out in counts and to be divided by 109  to convert m  into nm . 

Tdisp jω( )
25 counts

nm
----------------- .⋅–

jω( )3

jω 4,398 j 4,487⋅+ +( ) jω 4,398 j 4,487⋅–+( )⋅
----------------------------------------------------------------------------------------------------------------------

= (10.9-5)

Following the argument in Solution 10.6, we obtain the velocity frequency response 
function by dividing the displacement frequency response function by jω .

Tvel jω( )
25 counts

nm
----------------- .⋅–

jω( )2

jω 4,398 j 4,487⋅+ +( ) jω 4,398 j 4,487⋅–+( )⋅
----------------------------------------------------------------------------------------------------------------------

= (10.9-6)

In order to obtain gd 1 Tdisp jωcal( )⁄=  and gv 1 Tvel jωcal( )⁄= , we have to eval-

uate the modulus of the displacement frequency response function and the velocity 
response function at the calibration frequencies. Calculating these values (using a pocket 
calculator) and   fcal ωcal 2π⁄=  of 5 and 10 Hz, respectively, we obtain:

5 Hz: gd 0,00127324=  [nm/counts] and gv 0,03999=  [nm/s/counts]

10 Hz: gd 0,00063652=  [nm/counts] and gv 0,03999=  [nm/s/counts].

From Solution 10.8 we know that for harmonic input signals with signal frequency equal 
to the calibration frequency we obtain gd Ai

disp Ao⁄=  and gv Ai
vel Ao⁄= . Hence the 

frequency response function at the calibration frequency should be Ao Ai
disp gd⁄=  and 

Ao Ai
vel gv⁄= . 

In Fig. A 10.8, the displacement frequency response function has been calculated using 
DST for the two poles at 4,398 4,487± , three zeros at the origin and a scale factor of 25 
(internal sampling frequency 50 Hz, window length 4096). 
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So for the following argument Ai 1,0= . At 5 Hz, we expect 

Ao Ai
disp gd⁄ 1,0 0,00127324⁄ 785= = =  [counts]. Likewise at 10 Hz we obtain 

Ao 1571=  [counts] which can be seen to be the case in Fig. A 10.8.

co
un

ts
/n

m

1
gd
-----

5 Hz 10 Hz

Fig. A 10.8 Displacement amplitude frequency response function for Problem 10.9.

In Fig. A 10.9, the velocity frequency response function is displayed. It has been calcu-
lated the same way as the displacement frequency response function except for the fact 
that one of the zeros has been removed in order to account for the differences between 
displacement and velocity frequency response function. 

From the same argument as for the displacement frequency response at 5 Hz, we expect 
Ao Ai

vel gv⁄ 1,0 0,03999⁄ 25= = =  counts and the same value as for 10 Hz. We see 
in Fig. A 10.9 that both calibration frequencies are within the flat portion of the velocity 
frequency response function. 
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Fig. A 10.9 Velocity amplitude frequency response function for Problem 10.9.

Solution 10.10 Since the signal is a harmonic signal, all we have to do is determine the 
magnification in [counts/nm] for ground displacement at the signal frequency and divide 
the peak-to-peak amplitude in counts by that factor. Since we have 5 oscillations within 1 
sec, the signal frequency is 5 Hz. We have already calculated the magnification at that 
frequency (Solution 10.9). For the peak-to-peak amplitude of 396 counts, we therefore 
obtain the peak-to-peak displacement amplitude as:

396 Tdisp j 2πf⋅( ) f 5Hz=⁄ 396 gd
5Hz⋅ 396 0,00127324⋅ 0,5042nm= = = .

Solution 10.11 Because the resulting filter is causal, there is no signal before the sample 
corresponding in time to the input ’spike’. As a consequence, the zero crossings of the 
harmonic components at the Nyquist frequency must remain exactly at sample intervals. 
Therefore, the corresponding phase delay at the Nyquist frequency must be an multiple 
of the sampling interval, which necessarily causes a distortion of the phase response. 
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Solution 10.12 Because the slope of a sinusoid A0 ωt( )sin⋅  equals ω A0 ωt( )cos⋅ ⋅ , 

slopemax ω A0⋅= . and with amax 2A0=  the rise time for a sinusoid becomes 

tr usoidsin( ) 2 ω⁄ 2 2π f⋅( )⁄ T π⁄= = =  (10.12-1)

with T  the period of the sinusoid. Hence, for a sinusoidal signal, the rise time and the 
duration as measured from the time difference between zero crossings are related by a 
constant factor of π .

Solution 10.13  In Fig. A 10.10 the input spike, the causal and the acausal impulse 
responses of the 8 pole (4 section), 1 Hz Butterworth LP filter are displayed.

Fig. A 10.10  Input spike, the causal and the acausal impulse response of the 8 pole  
(4 section) Butterworth filter (from top to bottom)
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In contrast to the acausal filter, the causal filter shows a delay of both the maximum 
amplitude and the onset. For the acausal filter, the maximum amplitude is not delayed.

Several properties can be noted. For the causal filter, the onset shows the change in the 
onset order which slightly enlarges the pulse duration as measured from zero crossings 
with respect to the acausal filter. Remember that for the acausal filter the definition of an 
onset makes no sense. While the oscillations in the impulse response of the causal filter 
have larger amplitudes the frequencies are the same. Similar effects are visible for the 
step response function in Fig. A 10.11. Since the maximum values of the impulse 
response functions are very close, the maximum slopes of the step response functions 
and the rise times will be similar as well. Nevertheless, visually we note an apparent 
increase in the rise time for the causal filter, again caused by the change of the onset 
order.   

Fig. A 10.11 Superimposed step response functions for the 8 pole, 1Hz Butterworth LP filter for 
the causal and acausal case.
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