CHARME

Flat Slab to Steep Subduction Change of Nazca Plate in Central Chile

Mario Pardo

Universidad de Chile Departamento de Geofisica Blanco Encalada Santiago Chile

Assembled Data Set 05-025

Distributed by:
Incorporated Research Institutions for Seismology
Data Management Center
1408 NE 45th Street, Suite 201
Seattle, Washington 98105 USA
www.iris.washington.edu

CENTRAL CHILE TEMPORARY NETWORK (CHAR02) Nov. 07, 2002 - March 08, 2003

Mario Pardo
Departamento de Geofísica
Universidad de Chile
Blanco Encalada 2002
Santiago-Chile
mpardo@dgf.uchile.cl

Overview.

The 2002 Chile-Argentina (CHAR02), was a microseismic monitoring project in central Chile and Western Argentina (31°-34°S), done in joint collaboration between University of Chile and IRD-France. Objectives were to study the subduction processes in the region and particularly to perform a 3-D body-wave local tomography, where a change from flat-slab to steep subduction occurs in the subducted slab.

- Acquisition.

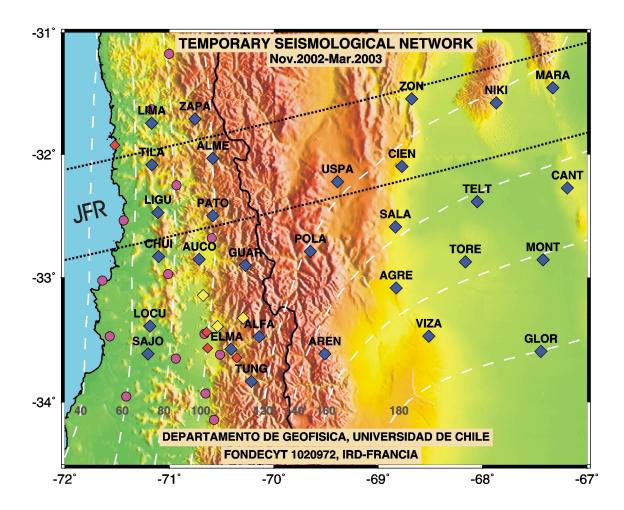
Fourteen stations from Passcal, Reftek 72A-08 with Guralp CMG40T sensors, recorded in continuous mode at 125 samples per second in the Chilean side. Permanent stations from the Central Chile network (http://ssn.dgf.uchile.cl) complemented the temporary network. At Argentina, fifteen stations from France were deployed (monfret@geoazur.unice.fr) (24 bits recorders with Guralp CMG40T and 3T).

-The station instrumentation and locations in Chile are summarized in the following table:

PASSCAL STATIONS IN CHILE

LAT(S)	LON(W)	Elev(m)	STA_NAME	DAS#	SENSOR#
-33.83600	-70.21467	1505	TUNG	0362	T4893
-33.47834	-70.13759	1738	ALFA	0395	T4301
-33.57781	-70.40984	929	ELMA	1032	T4891
-33.61575	-71.20398	234	SAJO	1204	T4901
-33.39272	-71.18550	327	LOCU	0576	T4624
-32.90104	-70.27118	1657	GUAR	0900	T4463
-32.83016	-71.10203	487	CHUI	0099	T4618
-32.50107	-70.58214	1224	PATO	0227	T4880
-32.47384	-71.10750	208	LIGU	1206	T4871
-32.03338	-70.58313	1612	ALME	1028	T4426
-32.08540	-71.16576	524	TILA	1207	T4620
-31.71053	-70.75271	1397	ZAPA	0870	T4411
-31.74556	-71.16772	332	LIMA	0340	T4478
-32.85337	-70.71243	804	AUCO	0907	T4301

-In Chile, all the channel orientations are:


Channel 4: Vertical (Azimuth=0°, Dip=90°)

Channel 5: N-S (Azimuth=0°, Dip=0°)

Channel 6: E-W (Azimuth=90°, Dip=0°)

-Waveforms:

The recorded waveforms are processed in Linux, and send in tar files, bzip2 compressed corresponding to days (Eyear-julday.tar.bz2). Each compressed tar file contains the events recorded in this day, organized in directories (Ehour:min:sec) in SEGY format, time corrected, in files per channel (yr:julday:hour:min:sec.DAS#.ch#)

