CRUISE REPORT

R/V Marcus G. Langseth

Crustal Accretion and Mantle Processes Along the Subduction-Influenced Eastern Lau Spreading Center Project: L-SCAN

(Lau Spreading Center Active-source Investigation)

Table of Contents

Table of Contents	2
Scientific and Operational Objectives	6
Science Summary	7
Scientific Overview	7
Scientific Objectives	8
Operational Objectives (cruise plan and experiment layout)	8
Lau Basin Currents	. 18
Contingency Plan	. 18
L-SCAN Operations Report	. 19
Narrative	. 20
Instrument Drop Points	. 28
Instrument Recoveries	. 30
Shot Line Log Campaigns I and II	. 31
Instrument Deployment Map	. 35
Shot Line Map – Campaign I	. 36
Shot Line Map – Campaign II	. 37
Instrument Performance	. 39
Assessment of OBS Operations and Instrumentation	. 41
Assessment of Ship Operations	. 44
APPENDIX 1: OBS Instrument Configuration	. 47
APPENDIX 2: WHOI OBSIP Cruise Report	. 50
APPENDIX 3: Assessment of Background Noise and Firing Interval	. 53
APPENDIX 4: Marine Mammal Observation Summary	. 54
APPENDIX 5: OBS Deployment & Logging Protocol	. 55
APPENDIX 6: OBS Deploy Log Keeping	. 55
APPENDIX 7: Line Change Orders	. 56
APPENDIX 8: Local and Global Earthquakes Occurring during the OBS experiment	. 57
APPENDIX 9: Gravity Reduction Information	. 59
APPENDIX 10: Towing Configurations	. 66
APPENDIX 11: XBT Drops	. 70
APPENDIX 12: Clearances	. 71

(R. Dunn – Honolulu, HI March 2009)

Crew and Science Party Manifest

Departure: Nuku'alofa, Tonga Date: January 24, 2009

Ship's Manifest

	Name	Position
1	Capt. Stan Zeigler	Captain
2	Dave Wolford	Chief Mate
3	Breck Crum	2 nd Mate
4	Nick Gasper	3 rd Mate
5	Anthony Johnson	Tech in Charge
6	Bern McKiernan	Acq/Nav - Night Shift Leader
7	Ted Kocynzski	Chief Acq Day Shift Leader
8	Gary Brodock	Steward
9	Ricky Rios	Cook
10	Nicky Applewhite	Utility
11	Gordon Baxter	AB
12	George Cereno	AB
13	Ricki Redito	AB
14	Villiami Maea	OS
15	Jason Woronowicz	Bosun
16	Jack Schwartz	Electrician
17	David Ng	IT
18	Fernando Uribe	Oiler
19	Rudy Florendo	Oiler
20	Charles Billips	Oiler
21	Tom Spoto	Chief Sound Source
22	Chip Maxwell	Sound Source Mechanic
23	Jenny White	Sound Source Mechanic
24	Carlos Gutierrez	Sound Source
25	Brian Goodlick	Sound Source
26	Al Karlyn	Chief Engineer
27	Pete Chizmar	1 st Engineer
28	Josh Reed	2 nd Engineer
29	Ryan Vetting	3 ^{ra} Engineer
30	Meike Holst	ММО
31	John Nicolas	ММО
32	Claudio Fosatti	MMO, Lead
33	Brad Dawe	ММО
34	Brendan Hurlev	ММО

Science Party

	Name	Position	Institution	email
1	Dunn, Robert	Chief Scientist	Univ. Hawaii	dunnr@hawaii.edu
2	Martinez, Fernando	Scientist	Univ. Hawaii	fernando@hawaii.edu
3	Conder, James	Scientist	S. Illinois Univ.	conder@geo.siu.edu
4	Conley, Michaela	Graduate Student	Univ. Hawaii	mconley@hawaii.edu
5	Austin, Regan	Graduate Student	Univ. Hawaii	regana@hawaii.edu
6	Sleeper, Jonathan	Graduate Student	Univ. Hawaii	jsleeper@hawaii.edu
7	Emry, Erica	Graduate Student	Washington U.	ericae@seismo.wustl.edu
8	Hernandez, Olga	Graduate Student	Univ. Toulouse	olgahernand@gmail.com
9	Gardner, Alan	OBSIP	WHOI, Lead	agardner@whoi.edu
10	DuBois, David	OBSIP	WHOI	ddubois@whoi.edu
11	Kane, Timothy	OBSIP	WHOI	
12	Rapa, Martin	OBSIP	Scripps, Lead	mrapa@ucsd.edu
13	Hollinshead, Crispin	OBSIP	Scripps	
14	Thai, Philip	OBSIP	Scripps	pthai@ucsd.edu

Total Crew and Scientists: 47

R/V Marcus Langseth Technical Support Organizational Chart Technical Support Organizational Chart Cruise MGL0903 v1.2							
	Tech-ir	n-charge					
	Anthony	Johnson					
		auisition	1				
	Ted Ko	oczynski					
		,	_				
	Chief	IT/Nav					
	Anthony	Johnson					
	Operational Watches Acc	nuisition and IT/Navigation					
Midniahi	t to Noon	Noon to	Midniaht				
Watch	Leader	Watch	Leader				
Bern McKiernan Ted Koczynski							
Acquisition Leader	Nav Leader	Acquisition Leader	Nav Leader				
Bern McKiernan	Bern McKiernan	Ted Koczynski	David Ng				
Acq Watch Stander A	Nav Watch Stander A	Acq Watch Stander A	Nav Watch Stander A				
Visiting Science Party Visiting Science Party		Visiting Science Party	Visiting Science Party				
	Chief Sound S Tom	ource Handling Spoto					
<i>Midnight</i> Watch	Operational Watches S t to Noon Leader	Sound Source/Handling Noon to Watch	<i>Midnight</i> Leader				
Brian G	Goodick	Carlos (Gutierrez				
Sound Sour	ce Mechanic	Sound Sour	ce Mechanic				
Спри	laxwell	Jenny	white				
Captain Chief Engineer Pl	Stan Zeigler Al Karlyn Robert Dunn						
Science Party Leader Shift 1	Fernando Martinez	Science Party Leader Shift 2	James Conder				
	Regan Austin Jonathan Sleeper Erica Emry	Olga Hernandez Michaela Conley					
NOTES:							
*Each of the three Technical Groups (Acquisition, IT/Nav, and Sound Source/Handling) will fully transition to 2 watches when necessary to leave flexibility to support Seismic gear deployment. Science operations manned 24 hours whenever data is being collected. *Tech-in-charge and PI will work out schedule for watch standing visiting science party including shift leaders and on deck responsibilities and seismic deployments.							

Scientific and Operational Objectives

Science Summary

The Eastern Lau Spreading Center (ELSC) is a RIDGE Integrated Study Site where researchers from many disciples come together to study the integrated mantle-to-microbes processes interacting within the ridge system. The spreading center exhibits a tremendous along-strike variation in geochemistry, petrology, spreading rate, crustal structure, and morphology. Because of this variation, the ELSC represents the optimum location for an experiment to study the relationship between mantle melt production, mantle flow, and spreading center processes. This active-source seismic experiment is one part of a two-part study (the other being a large broadband seismic study of the mantle beneath the ELSC) that is designed to test the following hypothesis: Variations in the mantle melt supply control ridge crest features such as morphology, thermal structure, and hydrothermal venting.

The experiment consists of 84 OBS deployments along a 150 km section of the ELSC extending from north of the inflated Valu Fa region to the magma-starved northern ELSC where the axial melt lens is absent. Lines of ridge-parallel and ridge-perpendicular airgun shots cover the area and provide seismic sources for imaging the crust and uppermost ~2 km of the mantle. This experiment will image structure on a scale of 1-3 km, and will provide detailed constraints on thermal structure and melt distribution immediately beneath the ELSC.

Scientific Overview

The generation and transport of melt beneath oceanic spreading centers is one of the most important geological process shaping the earth; it produces over two thirds of the global crust and is a primary means of chemical differentiation in the Earth. Yet the physical mechanisms controlling melt aggregation, transport, and collection within the axial crust are poorly understood. Most of our understanding of melt dynamics beneath ridges results from petrological and geochemical studies of the materials output by this process. In contrast, the spatial distribution of melt and the associated convective mantle structure have been imaged in few locations. Both surface morphology and geochemical outputs vary substantially along and between ridge segments so our goal is to take advantage of this fact to understand the relationship between mantle melt processes and the surface manifestation of these processes along the ridge. Careful documentation of both crustal and upper mantle structure along a single ridge segment, combined with modeling of mantle flow and melting are required to accomplish this goal. To date, such a combined 3-D imaging study has not been attempted along an oceanic spreading center.

The Eastern Lau Spreading Center (ELSC) provides one of the best locations for this work. The ELSC was chosen by the RIDGE 2000 (R2K) program for focused, multidisciplinary study, due to its backarc setting and the exceptional along-strike variability in chemistry, petrology, morphology, and hydrothermal flux. Detailed 3-D imaging of the uppermost mantle and crust will allow us to fulfill, in part, three of the seven objectives of the Lau Integrated Studies Implementation Plan: (1) characterize the mantle flow pattern and the magma production and transport regions; (2) understand the origin and consequences of gradients in lava composition along the ELSC; (3) understand the spatial-temporal variations of crustal architecture.

The active-source seismic experiment along the ELSC is designed to image uppermost mantle and crustal properties and their along-strike variation over a 150-km-long section of the ELSC to evaluate whether variations in the mantle melt supply control ridge crest features such as morphology, thermal structure, and hydrothermal venting.

The Eastern Lau Spreading Center

The ELSC is characterized by rapid along-strike changes in many variables and thus presents an excellent opportunity to understand the importance of various forcing functions in controlling ridge processes. Going from south to north, the spreading rate increases from 40 to 95 mm/yr [*Zellmer and Taylor*, 2001], the ridge axis changes from inflated to an axial valley [*Martinez and Taylor*, 2002], the melt lens disappears and layer 2A thins [*Collier and Sinha*, 1992; *Harding et al.*, 2000], the crustal composition changes from andesitic to tholeiitic [*Vallier et al.*, 1991; *Peate et al.*, 2001], and isotopic

values change from Pacific to Indian Ocean mantle domains [*Pearce et al.*, 1995]. Furthermore, the depth of the spreading axis increases and the mantle Bouguer gravity values increase [*Fouquet et al.*, 1991; *Bortnikov et al.*, 1993]. The distance of the ridge from the Tonga arc increases from 30 km to 100 km and the depth to the underlying slab increases from 150 km to 250 km.

It is hypothesized that many of the along-strike changes in the ELSC are produced by variable geochemical and petrological inputs via subduction, with the greatest influence in the south where the ridge is closest to the arc [*Pearce et al.*, 1995; *Martinez and Taylor*, 2002]. It is likely that the unusual chemistry observed in Valu Fa hydrothermal vents, particularly the enrichment in Zn and other metals, is related to the enriched andesitic crustal composition and the influence of slab-derived volatiles [*Fouquet et al.*, 1993; *Herzig et al.*, 1993]. Thus, mantle-melting processes appear to play a vital role in forming the chemical systems that are fundamental to the Lau vent ecosystems.

Despite the inferences that can be made based on petrology and geochemistry, how mantle melting may influence the ELSC to produce these systematic variations are unknown. The missing links are (1) the pattern of flow in the mantle wedge and its relation to variation in melt chemistry, distribution, and migration paths to the ridge; and (2) the pattern of melt delivery to the ridge axis at the base of the crust, and (3) crustal-level melt storage and thermal structure.

Scientific Objectives

Using a grid of OBSs extending 150 km along the ELSC, with a station spacing of ~8 km, and a grid of airgun shot lines, with a spacing of 1-4, km this experiment is designed to:

(1) Map the seismic velocity structure of the uppermost **mantle** beneath a 150-km-long section of the spreading center.

(2) Image the seismic velocity structure of the crust along this 150-km-long section of the ELSC.

(3) Construct a map of crustal thickness variations along and across the spreading center.

Operational Objectives (cruise plan and experiment layout)

Number of OBS Deployments and Recoveries

The experiment is divided into two OBS grids (A and B) and two shot grids (1 and 2) OBS Deployments Group A: 59 OBS Recoveries Group A: 25 Number left on seafloor after first shooting leg: 34 OBS

OBS Deployments Group B: 18 OBS Recoveries Group B: 52 (including those from group A left on the seafloor) Total Number of deployments: 77 deployments Total Number of recoveries: 77 recoveries

Parameters Used to Design the Active-Source Seismic Experiment

Ship speed deploy/recovery: 8 knots Ship speed shooting: 4.5 knots Airgun depth = 9 m (the marine mammal permit asks for 9-12 m) Shot interval: every 450 meters (~3.25 min) Station deployment time (each): 1 hour Station recovery time (each): 2.5 hours

Basic Plan: 59 instruments are placed on the seafloor (group A) and then Shot Pattern #1 is carried over these instruments. 25 of these instruments are then recovered (the southern section of the OBS grid) and 18 of these are reset and re-deployed to the north of the OBS that are still on the seafloor. Shot Pattern #2 is carried out over all instruments on the seafloor. All 52 instruments are then recovered. Figures below show the layout of Groups A and B and the Shot Lines for Patterns #1 and #2.

Contingency Days: There are 5 contingency days built into the program for weather and marine mammal delays^{*}. If some or all of this time is not needed, the plan will be (1) deploy the additional 7 instruments at the northern extreme of the array, (2) shoot additional along-axis lines during Shooting Campaign I or II. * See also bad weather contingency plan below.

Cruise Plan					
Transit time Nuku'alofa to Experiment: 0.85 days (includes 0.25 day to get out of port and 0.33 day for instrument release tests)					
Deployment A: 59 instruments Total time at sites: 2.46 days (1 hour to release each instrument) Transit days: 1.2 days Total transit length: 433 km Total days: 3.68 days					
Shooting A: (15 east-west lines and 13 north-south lines)Gun deployment:7 hoursGun maintenance:4 hours/48 hoursGun recovery:2 hoursActual Shooting:11.46 daysTotal days:12.67 days					
Recovery A: 25 instrumentsTotal time at sites:2.6 days (2.5 hours each instrument recovery)Transit days:0.54 daysTotal transit length:192 kmTotal days:3.15 days					
Deployment B: 25 instrumentsTotal time at sites:1.04 days (1 hour each instrument)Transit days:0.54 daysTotal transit length:187 kmTotal days:1.57 days					
Shooting B: (8 east-west lines and 14 north-south lines)Gun deployment:2 hoursGun maintenance:4 hours/48 hoursGun recovery:2 hoursActual Shooting:8.3 daysTotal days:9.2 days					
Recovery B: 59 instrumentsTotal time on site:6.1 days (2.5 hours each instrument)Transit days:1.26 daysTotal transit length:447 kmTotal days:7.4 days					
Transit time from Experiment to Suva: 2 days (includes 0.25 day to get into port)					
Total Number of Days = 40.5 + 3.5 days contingency					

Instrument Location and Shot Line Maps (planned)

Figure 0.1. Group A OBS layout and Shot Pattern #1.

Figure 0.2. Group B OBS layout and Shot Pattern #2. Numbers indicate order of deployment. Some stations from Group A remain on the seafloor during shooting pattern #2 (not shown).

Figure 0.3. (Left) Deployment order Group A. (**Middle**) Shot Pattern #1. (**Right**) Recovery order of partial Group A. Note that order is specified such that last drop corresponds to location where shooting starts and shooting ends close to where the first pickup is to be made. Yellow instrument remain on seafloor and are recovered with Group B.

Figure 0.4. (Left) Deployment order of Group B. (Middle) Shot Pattern #2. **(Right)** Recovery order of Group B and remaining Group A.

Instrument Group A and B Drop Positions

Α	Drop	Longitude	Latitude		Drop	Longitude	Latitude		
-	Number	(°)	(°)		Number	(°)	(°)		
	1	183.9484	-20.9709		47	183.7384	-20.5840		
	2	183.9645	-20.8969		48	183.7223	-20.6580		
	3	183.9806	-20.8228		49	183.7062	-20.7320		
	4	184.0141	-20.7521		50	183.6902	-20.8060		
	5	184.0128	-20.6748		51	183.6741	-20.8801		
	6	184.0392	-20.6027		52	183.5907	-20.9027		
	7	184.0449	-20.5267		53	183.6068	-20.8287		
	8	184.0610	-20.4527		54	183.6229	-20.7547		
	9	183.9938	-20.4013		55	183.6390	-20.6807		
	10	183.9241	-20.4289		56	183.6551	-20.6066		
	11	183.9777	-20.4753		57	183.6721	-20.5282		
	12	183.9132	-20.5016		58	183.6882	-20.4542		
	13	183.9616	-20.5494		59	183.7033	-20.3845		
	14	183.8971	-20.5756						
	15	183.9455	-20.6234						
	16	183.8810	-20.6497						
	17	183.9294	-20.6974						
	18	183.8602	-20.7228						
	19	183.9110	-20.7710						
	20	183.8451	-20.7924						
	21	183.8972	-20.8455	В	Drop	Lon	min	Lat	min
					Number	(°)		(°)	
	22	183.8238	-20.8700		60	-176	17.8518	-20	18.4369
	23	183.8812	-20.9195		61	-176	17.5643	-20	13.8661
	24	183.8053	-20.9436		62	-176	16.6853	-20	09.8209
	25	183.7776	-20.8998		63	-176	15.6339	-20	04.9825
	26	183.7201	-20.9274		64	-176	11.5983	-20	8.0640
	27	183.7362	-20.8534		65	-176	12.5635	-20	12.5058
	28	183.7937	-20.8258		66	-176	13.5287	-20	16.9476
	29	183.7547	-20.7798		67	-176	10.0578	-20	19.9216
	30	183.8121	-20.7522		68	-176	07.3161	-20	18.1310
	31	183.7708	-20.7058		69	-176	09.6574	-20	15.3722
	32	183.8259	-20.6777		70	-176	06.3509	-20	13.6892
	33	183.8316	-20.6402		71	-176	08.6922	-20	10.9304
	34	183.7868	-20.6317		72	-176	07.7270	-20	06.4886
	35	183.8420	-20.6037		73	-176	05.3857	-20	09.2474
	36	183.8500	-20.5667		74	-176	02.2204	-20	07.5376
	37	183.8029	-20.5577		75	-175	58.8907	-20	10.4846
	38	183.8580	-20.5297		76	-176	02.9032	-20	12.0331
	39	183.8214	-20.4841		77	-175	59.8559	-20	14.9264
	40	183.8271	-20.4467		78	-176	04.1508	-20	16.4211
	41	183.8694	-20.4547		79	-176	04.9748	-20	20.8898
	42	183.8351	-20.4096		80	-176	01.1035	-20	19.3144
	43	183.8902	-20.3816		81	-175	57.0679	-20	22.3960
	44	183.7867	-20.3619		82	-175	56.6100	-20	17.5822
	45	183.7706	-20.4359		83	-175	55.1375	-20	13.5124
	46	183.7545	-20.5099		84	-175	54.1952	-20	09.1764

Shot Lines Campaign I

Notes: shooting is expected to be continuous from line-to-line and there are no large turns required, since there will be no streamer. East-west lines and many north-south lines are spaced at >3 km apart. However, few north-south lines are spaced 2-2.5 km apart. It is preferred that the ship will swing around wide to make the turns at the ends of these lines, rather than hop across lines and then return to missed lines, since the latter method will eat up hours of additional time. Line times are for 4.5 knots over ground.

Line No.	Longitude	Latitude	Line times		
	(°)	(°)	turn times		
1	183.7133	-20.3387	10.0792		
	183.5524	-21.0790	0.6000		
2	183.5995	-21.0880	10.0792		
	183.7604	-20.3477	0.3600		
3	183.7886	-20.3531	10.0792		
	183.6277	-21.0934	0.3600		
4	183.6560	-21.0987	11.5191		
	183.8398	-20.2527	0.3600		
5	183.8680	-20.2581	11.5191		
	183.6842	-21.1041	0.3600		
6	183.7124	-21.1095	11.5191		
	183.8963	-20.2634	0.2400		
7	183.9151	-20.2670	11.5191		
	183.7313	-21.1131	0.2400		
8	183.7501	-21.1167	10.0792		
	183.9110	-20.3764	0.2400		
9	183.9298	-20.3800	10.0792		
	183.7689	-21.1202	0.3600		
10	183.7972	-21.1256	10.0792		
	183.9580	-20.3853	0.4800		
11	183.9957	-20.3925	10.0792		
	183.8540	-21.0447	0.3600		
12	183.8822	-21.0500	10.0792		
	184.0239	-20.3979	0.6000		
13	184.0710	-20.4068	10.0792		
	183.9101	-21.1471	3.0733		
14	184.0990	-20.9996	8.3993		
	183.4401	-20.8741	0.5040		
15	183.4482	-20.8370	8.3993		
	184.1071	-20.9626	0.5040		
16	184.1151	-20.9255	8.3993		
	183.4562	-20.8000	0.5040		
17	183.4642	-20.7630	8.3993		
	184.1232	-20.8885	0.5040		
18	184.1312	-20.8515	8.3993		
10	183.4723	-20.7260	0.5040		
19	183.4803	-20.6890	8.3993		
	184.1392	-20.8145	0.5040		
20	184.1473	-20.7775	8.3993		
01	183.4884	-20.6520	0.5040		
21	183.4964	-20.6150	8.3993		
20	184.1553	-20.7405	0.5040		
22	184.1634	-20.7035	8.3993		
00	183.5045	-20.5/79	0.5040		
23	103.5125	-20.5409	8.3993		
0.1	184.1/14	-20.0004	0.5040		
24	184.1795	-20.6294	8.3993		

	183.5205	-20.5039	0.5040
25	183.5286	-20.4669	8.3993
	184.1875	-20.5924	0.5040
26	184.1955	-20.5554	8.3993
	183.5366	-20.4299	0.5040
27	183.5447	-20.3929	8.3993
	184.2036	-20.5184	0.5040
28	184.2116	-20.4814	8.3993
	183.5527	-20.3559	

* 11.56 to shoot just the lines at 4.5 knots

Instrument Recovery Group A (partial) and Instrument Group B Drop Positions

Recovery	East_Longitude	Latitude	Drop	Drop	deg	min	deg	min
Order	(°)	(°)	Number	Number				
1	183.6390	-20.6807	55	60	-176	17.8518	-20	18.4369
2	183.7062	-20.7320	49	61	-176	17.5643	-20	13.8661
3	183.6229	-20.7547	54	62	-176	16.6853	-20	09.8209
4	183.6902	-20.8060	50	63	-176	15.6339	-20	04.9825
5	183.6068	-20.8287	53	64	-176	11.5983	-20	8.0640
6	183.5907	-20.9027	52	65	-176	12.5635	-20	12.5058
7	183.6741	-20.8801	51	66	-176	13.5287	-20	16.9476
8	183.7201	-20.9274	26	67	-176	10.0578	-20	19.9216
9	183.7776	-20.8998	25	68	-176	07.3161	-20	18.1310
10	183.7362	-20.8534	27	69	-176	09.6574	-20	15.3722
11	183.7937	-20.8258	28	70	-176	06.3509	-20	13.6892
12	183.7547	-20.7798	29	71	-176	08.6922	-20	10.9304
13	183.8121	-20.7522	30	72	-176	07.7270	-20	06.4886
14	183.7708	-20.7058	31	73	-176	05.3857	-20	09.2474
15	183.8602	-20.7228	18	74	-176	02.2204	-20	07.5376
16	183.9110	-20.7710	19	75	-175	58.8907	-20	10.4846
17	183.8451	-20.7924	20	76	-176	02.9032	-20	12.0331
18	183.8972	-20.8455	21	77	-175	59.8559	-20	14.9264
19	183.8238	-20.8700	22	78	-176	04.1508	-20	16.4211
20	183.8053	-20.9436	24	79	-176	04.9748	-20	20.8898
21	183.8812	-20.9195	23	80	-176	01.1035	-20	19.3144
22	183.9484	-20.9709	1	81	-175	57.0679	-20	22.3960
23	183.9645	-20.8969	2	82	-175	56.6100	-20	17.5822
24	183.9806	-20.8228	3	83	-175	55.1375	-20	13.5124
25	184.0141	-20.7521	4	84	-175	54.1952	-20	09.1764

Shot Lines Campaign II

Notes: East-west lines and many north-south lines are spaced at >3 km apart. However, a few north-south lines are spaced 2.5 km apart.

Line	deg	min	deg	min
No.				
01	-175	58.2692	-20	36.0441
	-175	50.8003	-20	01.6731
02	-175	52.4946	-20	01.3504
	-176	01.6871	-20	43.6531
03	-176	03.9462	-20	43.2227
	-175	55.9028	-20	06.2079
04	-175	57.5971	-20	05.8851
	-176	05.6406	-20	42.9000

05	-176	07.3349	-20	42.5773
	-175	58.1424	-20	00.2745
06	-175	59.8368	-19	59.9518
	-176	09.0292	-20	42.2545
07	-176	11.2884	-20	41.8242
	-176	02.0959	-19	59.5215
08	-176	03.5078	-19	59.2525
	-176	12.7003	-20	41.5552
09	-176	14.1123	-20	41.2863
	-176	04.9198	-19	58.9836
10	-176	06.6141	-19	58.6608
	-176	15.8066	-20	40.9635
11	-176	17.5010	-20	40.6408
	-176	09.4575	-20	03.6259
12	-176	11.7167	-20	03.1956
	-176	18.0365	-20	32.2787
13	-176	19.7308	-20	31.9559
	-176	12.2619	-19	57.5850
14	-176	13.9563	-19	57.2622
	-176	21.4252	-20	31.6332
15	-176	26.3543	-20	19.1302
	-175	46.8196	-20	26.6609
16	-175	46.3370	-20	24.4400
	-176	25.8717	-20	16.9093
17	-176	25.3891	-20	14.6884
	-175	45.8544	-20	22.2191
18	-175	45.3718	-20	19.9982
	-176	19.9647	-20	13.4088
19	-176	19.4820	-20	11.1879
	-175	52.7962	-20	16.2712
20	-175	52.3136	-20	14.0503
	-176	23.9413	-20	08.0257
21	-176	23.4587	-20	05.8048
	-175	43.9240	-20	13.3356
22	-175	43.4414	-20	11.1147
	-176	22.9761	-20	03.5839
23	-176	22.9761	-20	03.5839
	-176	22.4935	-20	01.3630
24	-176	01.0318	-20	05.4511
	-176	11.6491	-20	54.3108
25	-176	13.9082	-20	53.8804
	-176	03.2909	-20	05.0208
26	-175	53.6896	-20	06.8497
	-176	04.3070	-20	55.7093
27	-176	24.0743	-20	51.9440
	-176	12.9514	-20	00.7577

total time for lines is 8.2 days at 4.5 knots over ground.

Instrument Recovery - Group B and Group A (remaining) after Shot Pattern #2

Recovery Order	deg	min	deg	min	drop number
1	-175	52.5009	-20	09.4991	84
2	-175	53.4431	-20	13.8351	83
3	-175	54.9157	-20	17.9050	82
4	-175	55.3735	-20	22.7187	81

5	-175	56.3387	-20	27.1605	8
6	-175	57.3040	-20	31.6023	7
7	-175	57.6479	-20	36.1624	6
8	-175	59.2344	-20	40.4858	5
9	-176	04.2352	-20	41.8461	17
10	-176	03.2700	-20	37.4043	15
11	-176	02.3048	-20	32.9625	13
12	-176	01.3396	-20	28.5207	11
13	-176	00.3744	-20	24.0789	9
14	-175	59.4092	-20	19.6372	80
15	-175	58,1616	-20	15.2492	77
16	-175	57.1964	-20	10.8074	75
17	-176	00.5260	-20	07.8603	74
18	-176	01.2089	-20	12.3559	76
19	-176	02.4565	-20	16.7439	78
20	-176	03.2805	-20	21.2126	79
21	-176	04.5568	-20	25.7327	10
22	-176	05.2109	-20	30.0961	12
23	-176	06.1761	-20	34.5379	14
24	-176	07.1413	-20	38,9797	16
25	-176	10.4478	-20	40.6627	32
26	-176	10 1064	-20	38 4149	33
27	-176	09 4826	-20	36 2209	35
28	-176	09,0000	-20	34 0000	36
20	-176	08 5174	-20	31 7791	38
30	-176	07 8346	-20	27 2835	41
31	-176	06 5870	-20	22 8955	43
32	-176	05.6218	-20	18 4538	68
33	-176	04.6566	-20	14 0120	70
34	-176	03.6013	-20	09 5702	73
35	-176	06.0326	-20	06.8114	72
36	-176	00.0020	-20	08 3868	64
37	-176	00.0000	-20	11 2532	71
38	-176	10 8691	-20	12 8286	65
30	-176	07 9631	-20	15 6949	69
40	-176	11 8344	-20	17 2703	66
40	-176	08 3635	-20	20 2443	67
42	_176	12 7006	_20	20.2440	44
43	_176	13 76/18	_20	26 1530	45
44	_176	09 8035	_20	20.1009	42
45	_176	10 3761	_20	26 700/	40
46	_176	10.3701	_20	20.7334	0
47	-176	14 7300	_20	30 5057	46
	-176	11 8230	-20	33 1621	37
40	-176	15 6052	-20	35 0275	51 ۸7
4 9 50	-176	12 7801	-20	37 0020	3/
50	176	16 6601	-20	30 1702	<u> </u>
50	176	20 6060	-20	36 2077	40 56
52	176	10 6724	-20	31 6015	50
55	-170	19.0/34	-20	27 2400	50
54	-170	17 9004	-20	21.2490	50
55	-170	16 1575	-20	10 7507	09
50	-1/0	10.10/0	-20	10./09/	61
٦ <i>١</i> ٢٩	-1/0	10.0700	-20	14.1000	60
20 50	-1/0	14.9910	-20	10.1430	62
59	-1/0	13.9396	-20	05.3052	৩৩

Lau Basin Currents

Ocean surface currents effect transit speeds over-ground and shooting speeds and timing. Surface currents are seasonal and exhibit short-term fluctuations, in particular during storms. Near-real time ocean surface currents, derived from satellite altimeter and scatterometer data, can be found at <u>http://www.oscar.noaa.gov/datadisplay</u>. A recent 5-day average (about Dec. 21, 2008) shows SSE flow at <0.100 m/s (0.36 km/hr). The monthly mean (about Dec. 15, 2008) shows SE flow at ~0.05 m/s (~0.18 km/hr). A seasonal mean from Feb. 1, 2007 to March 1, 2008 shows a SSE flow at ~0.04 m/s (~0.14 km/hr). For a current of 0.20 km/hr and a shot interval of 450 meters, the timing of the shots will be delayed/advanced by only ~5 s. If surface currents become as high as 1 km/hr the shot timing will be delayed/advanced by 26 s. Since we wish to keep the shots greater than 3 minutes apart, only currents over 1 km/hr are of concern when the ship is traveling with the current.

Deep basin currents are expected to be significantly less than surface currents, but do impact instrument drops. The LAUB-FLEX project directly samples the deep-flow field in the Lau Basin with floats that are programmed to drift at depth and periodically return to the surface in order to transmit data back to shore. Once a month the float data are quality-controlled, processed and made publicly available at www.ldeo.columbia.edu/~ant/LAUB-FLEX as downloadable data and web animations.

Currently, there are 10 floats, which were deployed during three cruises in 2004-05, drifting in the Lau Basin. The available data span three- and four-week-long drift cycles and cover a good portion of the Lau Basin. The mean meridional (north-south) velocity recorded so far is 4.1(+/-0.9) mm/s (0.014 km/hr) to the north, while the zonal (east-west) flow is as yet indistinguishable from zero. Individual float-cycle-averaged velocities are omni-directional and associated with speeds up to 9 cm/s. Thus, on timescales of months, horizontal flow in the deep interior of the Lau Basin is primarily omni-directional, while the observed northward mean flow becomes important on longer (multi-year) timescales. **Peak velocities averaged over 3-4 week intervals can be as high as 30 mm/s (~0.100 km/hr).** Peak velocities averaged over shorter time periods are unknown. It can take 1-1.5 hours for an instrument to fall to the bottom (30 m/min); seafloor locations may be off by 100-150 m.

Contingency Plan

In the event that storms or other unforeseeable circumstances divert the ship for a short period of time from its main objectives of carrying out a seismic tomography study of the Eastern Lau Spreading Center, the following activities are proposed:

(1) Shoot lines of airguns to the moored hydrophone array of Bohnenstiehl et al. Airgun shots are used to calibrate acoustic wave travel time and transmission loss models. Proposed lines:

(183.000°E, 23.000°S) to (182.000°E, 23.000°S)

- (182.883°E, 20.000°S) to (182.883°E, 18.500°S)
- (183.000°E, 20.425°S) to (182.250°E, 20.425°S)
- (183.000°E, 21.000°S) to (183.500°E, 19.750°S)
- (2) Survey areas for seismometer deployments that will occur during the Wiens et al. broadband seismic cruise that is expected to occur in late 2009. There are some gaps in the current seafloor maps of the area and pre-surveying those gaps would save time for positioning instruments during the Wiens et al cruise that is expected to occur late 2009.
- (3) Survey areas of the Western Lau basin using a multi-beam system and gravimeter. Large gaps in the detailed seafloor maps of the western basin could be at least partly filled in, so as to achieve a better understanding of the history of plate tectonics of the area (see justification below).

No time-frame for this potential work is specified (other than the time-frame of the cruise Jan 16-Feb 28). We would return to the main experiment site immediately when able to do so. Depending on a storm's location and track, we could divert to any area in the region from 178.5W - 176.5W; 23S-18.5S. Which includes excursions into territory claimed by Fiji.

MGL0903

L-SCAN: Lau Spreading Center Active-Source INvestigation

L-SCAN Operations Report

Narrative

(dates and times are referenced Tonga local)

23 Jan 2009 (Tongatapu) – The academic science party moved aboard today along with the Marine Mammal Observers. The OBSIP group preceded us the day before. We spent the day readying the lab, tying down computers, connecting to the ships network and the internet (high-seas network), discussing the experiment, and stowing gear.

24 Jan 2009 - Depart Nuku'alofa, Tonga just after 8 am local time with all hands aboard. Harbor pilot was picked up by small boat soon thereafter. We slowly maneuvered north from the island through several small islands and shoals. Once clear of the shallows, we turned west into the Lau basin toward the experiment area and the first instrument drop about 5 hours later. That instrument, a WHOI OBS, was deployed with only one hiccup: the small winch used for the A-frame was stuck and no amount of begging and cajoling could get it to work. Instead, we used a small deck crane, a rather difficult operation as the crane was required to clear the OBS frames on the deck, making it difficult for the deck hands to control the instrument as it hung from the cable. The A-frame winch is obviously poorly located, being on the main deck and subject to the constant sloshing of seas over the starboard side. It shows significant rust and may prove to cause problems down the road. Perhaps a better placement would be on the level above, with the controls at the A-frame. That would allow one operator to control both the A-frame and the winch, rather than the two operators that are currently required. The winch was later fixed by Ted, who used a tried-and-true, if not old-fashioned, methodology that one can't find in the repair manual. Afterward, we moved to a new position west of the OBS drop in >2500m of water for the SIO release tests. We then held station at that location throughout the night and into the next day (~15 hours) for three up and down tests of the instrument releases. This test took ~6-7 hours longer than anticipated due to the inoperable main winch; the ships crew jury-rigged an alternate system using a streamer capstan, rope, several pulleys, and the main winch's boom. Aye! Another winch problem! Medium swell from low-pressure system passing through the area made for a rough first day for some of the less-seaworthy aboard.

25 Jan 2009 – By about 9 am we had finished the release tests and had moved to the next station where we deployed a Scripps OBS. We then continued to deploy instruments at an increasing rate, taking from about 1 hour 20 minutes between each drop to about 50 minutes. One hour from drop-to-drop gives the OBSIP team enough time to ready their instruments for deployment. Less time from drop-to-drop and the OBSIP groups began to strain. Since I have allotted 90 minutes or more for the time between each deployment, we will have already made up much of the time lost to the release tests. OBS guys have no complaints about their set up, though the deck gets plenty wet.

26 Jan 2009 – By noon we have deployed 29 of the 59 instruments. We have one bad SIO clock and problems with two WHOI instruments. By 1 pm it looks like the SIO instrument is dead, but there are two WHOI instruments extra (a nice surprise!) so we may be able to deploy to all 59 locations if they get at least one of their faulty instruments up and running. The OBS teams (a mix of WHOI and SIO members for each 12 hour shift) have really gotten into the swing of things today. The shortest time between drops was 39 minutes. These guys are really going all out and we will owe them considerably in the end. A tropical disturbance is pressing down on us from the north, moving slowly, it should arrive soon.

27 Jan 2009 – The tropical depression "arrived" around midnight or thereabouts. The main deck from which OBS are deployed was often awash and more than one OBS tech was washed about on the deck. One wave caught the frame and floats of an SIO instrument and smashed it against the WHOI van crushing a glass ball; there was a replacement available. Winds are 20-25 knots and the sea state is medium swell with lots of chop and whitecaps. Had a conference call this morning with Lamont concerning Marine Mammal Incidental Harassment Authorization. We were told that the extension for the permit (due to cruise date delays) will be granted. We finished dropping the last OBS (all 59 requested were deployed) at 0215 local time. One and a quarter days ahead of schedule! One or two WHOI instruments will have a time-base problem, but apparently it is known and can be corrected after recovery of the data. We ran east to avoid the storm and get the guns out and tested, but by the time we were ready to shoot the seas were kicking up hard. As we turned on to the first shot line back towards the west we were getting pounded. I think we might have fired two shots when, just as we were deciding whether to continue shooting, a compressor went down due to a clogged intake valve (my understanding of it at the time). So we brought the guns back in to weather out the storm safely. Some OBS techs went out on deck in

the night to better secure their now-empty frames. They took a beating. At this point we are still ahead of schedule.

28 Jan 2009 – Rode out the storm this morning by heading to the southeast corner of the experiment in hopes of deploying guns in better weather there. As it turned out, after we had the guns all tested on deck and ready to deploy the seas kicked up and the gun slip became a nasty place to work. The crew were willing to deploy the guns (the ship has a great crew that seems to work very well together) but my understanding was that they wouldn't be able to bring them back aboard in such weather and if the weather worsened we would be stuck with them out, possibly resulting in damage. Weather reports indicated higher winds in our future. In heavy seas and high wind conditions the seismic source isn't very good and the data noise levels are high (from past experience). In the waning daylight hours I made the decision not to deploy the guns given that the risk to guns and crew was too great considering that the data would be poor anyway. We woke Fernando M., our mapping specialist, and charted a new course along the eastern margin of the experiment that would both cover some new ground and steer us clear of the tropical depression to our west. We made little headway during the night due to high seas (1-3.5 knots) and the multibeam data is noisy. The tropical depression continued south-south-west and grew into Tropical Cyclone Hettie during the night.

29 Jan 2009 - By morning the ship was located just north-east of the shooting grid and the seas had calmed considerably for us. Anthony and team fired up the guns and deployed all 4 strings. One string (#2) was having problems so I decided to go ahead with only three strings and allow the gunners to fix #2. On the way in, #2 flooded due to an o-ring failure and by noon it was on deck and being cleared out. I decided to run the east-west lines first, because the north-south lines would immediately take us closer to the cyclone. Also, the east-west lines are a bit less important than the north-south lines and I would like to do the north-south lines in better weather if at all possible. By noon we were sitting just at the cyclone's north-eastern edge and starting on to our first shot line. Weather at this location is good and seas are moderate. Shots are being recorded as I write. We are a fraction of a day behind schedule. Hopefully we can get back on and stay on, or a little ahead of, schedule. There is another tropical disturbance coming down the pipeline; it is currently located north-west of New Caledonia. We won't see it for several days if at all.

Tropical Cyclone - Gale and Storm A Gale Warning 032 ISSUED FROM RSMC NADI Jan 29/0111 UTC 2009 UTC. Tropical Cyclone HETTIE 08F [995hPa] centre was located near 22 decimal 6 South 177 decimal 8 West at 290000 UTC. Position Fair. Repeat position 22.6S 177.8W at 290000 UTC. Cyclone moving south-southwest at about 7 knots. Expect sustained winds of 35 knots within 240 nautical miles of centre in the southeastern quadrant. Forecast position near 23.7S 178.9W at 291200 UTC. and near 24.2S 179.7E at 300000 UTC. All vessels within 300 nautical miles of centre are requested to send reports every three hours. VOS reporting ships use normal channels. Other vessels fax plus 679 6720190 or email naditcc at met dot gov dot fj. This warning cancels and replaces warning 031.

30 Jan 2009 – This morning the weather has cleared considerably and the sea state is much improved. We passed through several squalls last night and expect those to continue, since we are sitting in a large "monsoon trough" weather-wise. Cyclone Hettie continues southward and has lost its cyclone status. We are still having problems with string #2 and guns #9&10 on string #4 haven't worked at all (bad module?). So at the end of our second shot line we are pulling in strings #2 and #4 for more fixing (we pulled in #2 last night at the beginning of this shot line for repairs that only partially worked).

31 Jan 2009 – Calm seas and light showers. Continued shooting east-west lines over deployment A. Guns have required repairs during most of the turns, air leaks and drop-outs, but the repairs are quick (~1.5-2 hours each) and performed at the full 4.5 knots and at the ends of the lines where the full source is less important. The repairs are burdensome, but break up the monotony. Weather forecast continues to look good.

1 Feb 2009 – Calm seas no showers. Continued shooting east-west lines over deployment A. Schedule continues to slip due to gun problems.

2 Feb 2009 – Calm seas no showers earlier in the day; a little swell and showers later in the day. Continued shooting east-west lines over deployment A. Dropped the ends of half-a-dozen shot lines due to delays resulting from gun problems. Once these east-west lines are completed, we should be back on schedule. Apparently Tom's torque wrench used to tighten the bolts on the guns etc. is untrustworthy – i.e., he doesn't trust the calibration scale – and he is unsure if the bolts are set at the right torque. This may be part of the cause of some of the gun problems. We tested a depressor today for the magnetometer. The issue there is that it must be towed well behind the ship to avoid data corruption from the ship's structure. However, the magnetometer cannot be towed past the guns for fear of entangling the cable with the guns. The magi manufacturer does make a depressor and a weight set designed to push the tow depth below the gun depth allowing for a longer ship-tomagi offset, but we don't have that aboard, so we are designing one of our own. Initial tests indicate that it is a little small, so we will do some more modifications and tests tomorrow.

3 Feb 2009 – Calm seas and gray skies with occasional showers. Regional weather looks good overall. There is a large low-pressure system developing 400 km to the west-north-west and is so far stationary in location. Fernando edited the bathymetry that we have collected so far to date. Looks good. He was even able to clean up the very noisy data that we collected the night of the cyclone. Gun one on string one went down today. We pulled it in and the shield around the solenoid block had literally torn loose (1/4" steel) due to the guns crashing into each other during recoil on firing. Lamont needs to consider attaching spreader bars on the gun clusters, especially the front ones, since this recoil problem appears to be the source of many of our gun woes and has resulted in a lot of lost time and data during this experiment.

4 Feb 2009 – Ended East-west lines for deployment A and began north-south lines. Had one gun problem at the end of the first line, but was easily fixed after pulling in String #1. The guns have been better behaved for the past 36 hours. Magi depressor tests did not turn out as well as hoped and we won't tow it behind the guns.

5 Feb 2009 – Calm seas good weather, continued shooting. Continued repairing guns as necessary. Depressor tests for magnetometer fail. We will tow Maggie forward of guns.

6 Feb 2009 – The gun array seemed to fall apart this morning beginning around 5:30 am. Air leaks, gun loss, miss firing, cross firings, and other inexplicable problems. We pulled in #3 and the gunners worked on it for some time, meanwhile #2 fell apart. We went off line and began 20 s shots to sort it all out. By turning various guns on and off and switching coms and power links Anthony and team were able to get most of the array back up to full power. We went back online and continued down the shot line, but we will need to go back and reshoot the missed portion of the line later. The tropical depression that was west of us has moved south-west of us. Though it continues to move southward, things could get nasty for us if it were to hook north. For that reason, we'll continue shooting the main lines while the weather is good, rather than loop back around to pick up the lost line. Lots of complaints from the gunners that they do not have enough spare parts aboard. We are starting to fall behind schedule bit by bit due to the gun problems. We have about 3 days of shooting left before picking up the first 25 instruments and before bringing in the guns for a major overhaul.

7 Feb 2009 – Calm seas good weather. Continuing shooting north-south lines. Added a small 6 hour loop to the experiment to re-shoot a section of line that we missed yesterday due to the gun problems. Finished the day without any further gun problems.

8 Feb 2009 – Calm seas and sunny weather. The topical depression to our southwest continued moving south last night, entering cool waters and eventually faded away. Weather looks exceptional for the next 2-3 days at the least. We had a BBQ on the sundeck tonight. It was enjoyed greatly by all. We have been shooting a long time and everyone needed something new.

9 Feb 2009 – Calm seas and scattered showers.

10 Feb 2009 – Finished last shot of the first shot campaign at just before 1100 local. The guns and PAM were out of the water in a little over an hour after that. We then had the first OBS aboard by 1330. The next instrument was aboard after another 1.5 hours.

11 Feb 2009 – Continued good weather; instrument recoveries progressing rapidly.

15 Feb 2009 – Completed recoveries several days earlier. All 25 instruments were aboard in ~36 hours. We then redeployed all 25 instruments in about 19 hours start-to-finish. By Feb 13 0800 local we were deploying the guns and lining up for the first shot line. Shot Campaign II will take about 9 days and we may have some time for a few more shot lines than planned. Found out yesterday that our Tongan permits for operating in their EEZ are unclear as to when we would need to be finished with all research activities. Our main permit lasts until March 3, and although we were to understand that we had an extension until March 11, the extension was not clearly verified via a letter from the Tongan government. Rupert at the marine office swears that we are OK to continue operations after the 3rd, but it is painfully clear that the paperwork is not in order. He has been in contact with the State Dept. for clarification, but it looks like that clarification will need to come from the U.S. Embassy in Fiji (which also services Tongan requests). We are all waiting to hear the outcome. Came across two fishing vessels late in the day. They had out long lines. We skirted the tail buoy of the closest line by maybe 90 meters just as the sun set.

16 Feb 2009 – Calm seas and weather. Continued shooting; continued to have miscellaneous gun problems. Still not enough spare parts.

17 Feb 2009 – Same. Lost full volume for a good portion of one of the north-south lines on the western side of the ridge. Decided not to loop around to fill the gap since we do not have permission to operate here after the 3rd and we need to continue filling in the grid.

18 Feb 2009 – More "assurances" from the marine office about the Tongan extension. And then finally an admission that the Tongan's have not yet given us the date change permission and that we will be operating after March 3 in violation of the current agreement. Rupert is looking into getting the continuation and also some clarification as to whether we must stop all activities on March 3 or just the airgun activity. Permission to have gear on the seafloor after March 3 is all we need to carry out the cruise plan, since shooting will stop before March 3 in any case.

20 Feb 2009 – Capt'n received some clarification from the marine office as to whether we can have gear on the seafloor after March 3. The answer is affirmative, so we will stick to the plan and continue shooting the lines for Campaign II. Although we will be pulling in the guns around the 25th or so, we need the time after March 3rd to pull up the instruments if there are any delays due to weather or instruments.

23 Feb 2009 – Still working on reading the SEGY seismic data files from the two groups. The file formats have changed and also the two OBS groups, which are supposed to form a coherent instrument pool, do not use the same information in the SEG-Y headers.

24 Feb 2009 – Found mistake in SIO header (lat and lon swapped by accident) and that should clear up things immensely. Working on analysis code to pick the data using either OBS group's format; also Michaela is writing an instrument relocation code to use the water waves to locate the instrument seafloor positions.

25 Feb 2009 – Last shot at 0400 LT (shot #113119). Our last lines included re-shooting some areas where we did not have full gun volume, and we re-shot 7 previously shot lines so that we could stack the data for better returns, since initial analysis of the data revealed poor mantle returns. Guns were out of the water by ~0600 LT and we started recovering instruments at first light. Instrument recoveries progressing rapidly due to mild sea state. Fernando started laying out his tracks for surveying the western basin. The lack of a Tongan permit after the 3rd is still a pain in the neck as far as the surveying is concerned. First we rushed through the seismic experiment to get it done and now we will rush through the mapping phase. We may need to do all Tongan areas first and then proceed to Fijian waters. Capt'n is concerned about "shallow areas" in the survey plan. Shoals are marked on his charts, but they look to be in 2000+ meters of water according to the existing multibeam data.

26 Feb 2009 – Emailed Kelepi Mafi at the Tongan Ministry that is in charge of vetting our permits. I told him that our current permits runs out on March 3 and was wondering if he had seen our request for extension. He was very apologetic that we had not received the permission, and that he had not yet seen our UN request form. He later replied that he would see to it that the appropriate cabinet minister would see our request.

27 Feb 2009 – No word from Kelepi today, other than a request for collaboration with Fernando Martinez to write up something on the Tonga-Kermadec Ridge which he needs for an extended continental shelf claim by his government. Looks like we won't get the extension in time. Soon we will begin executing an alternate plan.

28 Feb 2009 – Pulled up last OBS at ~2100 LT. The good weather facilitated getting all instruments up in record time (1.5 hours station-to-station). 100% instrument recovery; 84 total deployments and 84 recoveries. Secured deck, including deck winch used for instrument recoveries; deployed magnetometer, turned on multi-beam and 3.55 KHz systems, which had been turned off for instrument recoveries (pings interfere with ability to talk to instruments). Transited west to begin geophysical mapping.

01 March 2009 – Mapping all day along EEZ border in Tongan waters in order to complete Tongan regions before permit runs out. The coverage we are getting is not optimal.

02 March 2009 – Kelepi wrote to say that the request wasn't considered last week, but it would be considered at a March 4th cabinet meeting. Unfortunately that is too late and we have already rushed through our plans to be "finished" by the 3rd midnight.

03 March 2009 – Continued mapping. Western basin shows signs of more recent volcanism. Also sediments here are easily penetrated by the 3.55KHz system, unlike the volcanoclastics to the east of the spreading center.

04 March 2009 - Continued mapping. Heard that our extension was approved during yesterdays cabinet meeting.

05 March 2009 - Continued mapping.

06 March 2009 - Continued mapping.

07 March 2009 - Continued mapping. Heading to port.

08 March 2009 - In port.

Time Line

Event	Time Mark	Time Mark	Notes
	Panned (days)	Actual (days)	
Departure	0	0.02	Jan 24 0800 (LT) Expected
Finished release tests	.85	1.04	
Finished deploying OBS grid A	4.53	3.26	1.27 days ahead of schedule
Deploy Guns and begin A lines	4.83	4.93	0.1 days behind schedule 1 st line started on Jan 29 @ 0054 local time
Completed east-west lines numbered18-28.	8.89	9.16	(4.06 days expected / 4.23 days of actual shooting)6.5 hours behind scheduleShortened some east-west lines to save time.
Completed all east-west lines for deployment A	10.5	10.9	(5.67 days expected / 5.77 days actual shooting)
Completed all north-south lines for deployment A – guns recovered	17.2 (by 1 pm Feb 10 local)	17.17	(6.7 days for N-S lines expected) Completed 10 Feb 1200
Recovered 25 Instruments	20.35	18.7	0100 Feb 12 LT
Redeployed ## Instruments	21.47	19.77	0330 Feb 13 all deployed
Finished North-South Lines II			
Finished East-West Lines II	30.67	31.92	(Midnight Feb 23 expected/ 0400 LT Feb 25 actual – added extra lines)
All instruments Recovered	38.07	35.5	(10 am March 3 expected; Feb 28 9 pm actual)
Geophysical Mapping	41.5	42.5	
Transit to Suva	43	43	(Arrive 0800 LT expected)

Calendar Day Conversion

Day	JDay	UTC Day	Day	JDay	UTC Day	Day	JDay	UTC Day
0	24	24 Jan 2009						
1	25	25 Jan 2009	16	40	09 Feb 2009	31	55	24 Feb 2009
2	26	26 Jan 2009	17	41	10 Feb 2009	32	56	25 Feb 2009
3	27	27 Jan 2009	18	42	11 Feb 2009	33	57	26 Feb 2009
4	28	28 Jan 2009	19	43	12 Feb 2009	34	58	27 Feb 2009
5	29	29 Jan 2009	20	44	13 Feb 2009	35	59	28 Feb 2009
6	30	30 Jan 2009	21	45	14 Feb 2009	36	60	01 Mar 2009
7	31	31 Jan 2009	22	46	15 Feb 2009	37	61	02 Mar 2009
8	32	01 Feb 2009	23	47	16 Feb 2009	38	62	03 Mar 2009
9	33	02 Feb 2009	24	48	17 Feb 2009	39	63	04 Mar 2009
10	34	03 Feb 2009	25	49	18 Feb 2009	40	64	05 Mar 2009
11	35	04 Feb 2009	26	50	19 Feb 2009	41	65	06 Mar 2009
12	36	05 Feb 2009	27	51	20 Feb 2009	42	66	07 Mar 2009
13	37	06 Feb 2009	28	52	21 Feb 2009	43	67	08 Mar 2009
14	38	07 Feb 2009	29	53	22 Feb 2009			
15	39	08 Feb 2009	30	54	23 Feb 2009			

Local Time (Tongan) is GMT+13

Instrument Drop Points

Site Drop Drop Drop Water Inst. Order Longitude Latitude Depth Man. No. (m) (°) (°) W 1 -176° 03.103 -20° 58.239 2406 1 2 24 -176° 11.918 -20° 56.570 2202 S 3 -20° 55.177 S 23 -176° 07.041 2293 4 W 2 -176° 02.158 -20° 53.810 2416 5 3 -176° 01.192 -20° 49.380 2334 W 6 -175° 59.153 -20° 45.139 W 4 2200 7 5 -175° 59.229 -20° 40.529 2255 S 8 S 6 -175° 57.740 -20° 36.789 2285 9 7 -175° 57.319 -20° 31.614 2242 S 10 8 -175° 56.345 -20° 27.167 2289 S 11 -176° 00.395 S 9 -20° 24.066 2431 12 S 10 -176° 04.736 -20° 25.588 2452 S 13 -20° 28.491 2411 11 -176° 01.408 14 S 12 -176° 05.204 -20° 30.094 2447 15 13 -176° 02.291 -20° 32.968 2333 S 16 14 -176° 06.199 -20° 34.533 2425 S 17 15 -176° 03.277 -20. 37.402 2313 S 18 16 -176° 07.203 -20° 39.002 2416 S 19 2300 W 17 -176° 04.267 -20° 41.841 20 18 -176° 08.398 -20° 43.362 2330 W W 21 19 -176° 05.396 -20° 46.225 2304 W 22 20 -176° 09.338 -20° 47.513 2217 23 W 21 -176° 06.147 -20° 50.738 2389 -176° 10.626 24 22 -20° 52.206 2099 W 25 -176° 13.370 -20° 53.974 W 25 2247 W 26 26 -176° 16.805 -20° 55.638 2422 -176° 15.811 W 27 27 -20° 51.196 2483 28 -176° 12.362 -20° 49.547 W 28 2143 29 29 -176° 14.697 -20° 46.790 2359 W 30 W 30 -176° 11.266 -20° 45.134 2129 31 S 31 -176° 13.708 -20° 42.390 2480 32 S 32 -176° 10.465 -20° 40.662 2215 33 33 -176° 10.186 -20° 38.271 2418 S 34 -176° 12.794 -20° 37.916 2567 S 34 35 S 35 -176° 09.488 -20° 36.229 2469 S 36 -176° 09.039 -20° 33.984 2540 36 37 -176° 11.847 -20° 33.460 2541 S 37 38 38 -176° 08.511 -20° 31.786 S 2511 39 -20° 29.047 S 39 -176° 10.733 2656 40 40 -176° 10.402 -20° 26.794 2663 S 41 41 -176° 07.653 -20° 27.353 2418 S 42 42 -176° 09.880 -20° 24.600 2704 S 43 43 -176° 06.626 -20° 22.886 2364 S 44 S 44 -176° 12.969 -20° 21.655 2343 45 45 -176° 13.777 -20° 26.146 2375 S 46 -176° 14.756 -20° 30.599 2375 W 46 47 47 -176° 15.716 -20° 35.016 2273 W 48 48 -176° 16.684 -20° 39.478 2367 W W 49 49 -176° 17.638 -20° 43.947 2365 50 W 50 -176° 18.595 -20° 48.384 2432 51 51 -176° 19.500 -20° 52.827 2250 S 52 52 -176° 24.599 -20° 54.168 2408 S 53 53 -176° 23.572 -20° 49.737 2413 S 54 54 -176° 22.652 -20° 45.304 2330 S 55 55 -176° 21.700 -20° 40.848 2243 S

Instrument Group A Drop Order and Positions

56	56	-176° 20.722	-20° 36.407	2313	S
57	57	-176° 19.739	-20° 31.718	2032	S
58	58	-176° 18.719	-20° 27.228	2259	S
59	59	-176° 17.830	-20° 23.045	2447	S

Instrument Group B Drop Order and Positions

Drop	Site	Drop	Drop	Water	Inst.
Order	No.	Longitude	Latitude	Depth	Man
		(°)	(°)	(m)	
1	60	-176° 17.868	-20° 18.417	2298	W
2	61	-176° 17.582	-20° 13.856	2390	W
3	62	-176° 16.702	-20° 09.788	2607	W
4	63	-176° 15.653	-20° 04.944	2623	W
5	64	-176° 11.596	-20° 08.067	2466	W
6	65	-176° 12.548	-20° 12.493	2489	W
7	66	-176° 13.528	-20° 16.906	2317	S
8	67	-176° 10.040	-20° 19.863	2365	S
9	68	-176° 07.316	-20° 18.115	2758	S
10	69	-176° 09.637	-20° 15.374	2421	S
11	70	-176° 06.350	-20° 13.674	2780	S
12	71	-176° 08.671	-20° 10.933	2583	S
13	72	-176° 07.700	-20° 06.455	2712	S
14	73	-176° 05.331	-20° 09.223	2675	S
15	74	-176° 02.147	-20° 07.460	2504	W
16	75	-175° 58.868	-20° 10.501	2352	W
17	76	-176° 02.892	-20° 12.011	2382	W
18	77	-175° 59.842	-20° 14.927	2432	W
19	78	-176° 04.191	-20° 16.421	2445	W
20	79	-176° 04.984	-20° 20.910	2392	W
21	80	-176° 01.103	-20° 19.282	2416	W
22	81	-175° 57.062	-20° 22.408	2132	W
23	82	-175° 56.649	-20° 17.570	2150	W
24	83	-175° 55.146	-20° 13.491	2207	W
25	84	-175° 54.202	-20° 09.144	2259	W

Instrument Recoveries

Instrument Recovery Group A (partial)

Rec.	Drop	Drop	Drop	Instr.	Recovery	Recovery	Drift	Drift
Order	(°)	(°)	NO.	туре	(°)	(°)	(11)	(°)
1	-176° 21.700	-20° 40.848	55	S	-176 21.552	-20 40.961	344	127
2	-176° 17.638	-20° 43.947	49	W	-176 17.592	-20 43.908	089	050
3	-176° 22.652	-20° 45.304	54	S	-176 22.718	-20 45.378	183	222
4	-176° 18.595	-20° 48.384	50	W	-176 18.618	-20 48.446	122	200
5	-176° 23.572	-20° 49.737	53	S	-176 23.603	-20 49.868	250	193
6	-176° 24.599	-20° 54.168	52	S	-176 24.706	-20 54.331	359	213
7	-176° 19.500	-20° 52.827	51	S	-176 19.435	-20 52.899	179	138
8	-176° 16.805	-20° 55.638	26	W	-176 16.845	-20 55.794	298	194
9	-176° 13.370	-20° 53.974	25	W	-176 13.375	-20 53.962	024	000
10	-176° 15.811	-20° 51.196	27	W	-176 15.803	-20 51.231	067	167
11	-176° 12.362	-20° 49.547	28	W	-176 12.330	-20 49.567	070	122
12	-176° 14.697	-20° 46.790	29	W	-176 14.644	-20 46.792	098	92
13	-176° 11.266	-20° 45.134	30	W	-176 11.239	-20 45.184	106	152
14	-176° 13.708	-20° 42.390	31	S	-176 13.670**	-20 42.514**	241	163
15	-176° 08.398	-20° 43.362	18	W	-176 08.418	-20 43.414	104	201
16	-176° 05.396	-20° 46.225	19	W	-176 05.350	-20 46.149	165	31
17	-176° 09.338	-20° 47.513	20	W	-176 09.261	-20 47.462	171	57
18	-176° 06.147	-20° 50.738	21	W	-176 06.157	-20 50.699	075	346
19	-176° 10.626	-20° 52.206	22	W	-176 10.556	-20 52.139	179	46
20	-176° 11.918	-20° 56.570	24	S	-176 11.852	-20 56.547	129	71
21	-176° 07.041	-20° 55.177	23	S	-176 06.951	-20 55.055	281	36
22	-176° 03.103	-20° 58.239	1	W	-176 03.215	-20 58.217	211	281
23	-176° 02.158	-20° 53.810	2	W	-176 02.123	-20 53.702	210	18
24	-176° 01.192	-20° 49.380	3	W	-176 01.115	-20 49.319	182	52
25	-175° 59.153	-20° 45.139	4	W	-175 59.076	-20 45.020	263	33

**On deck position, not hook position.

Instrument Recovery Group A (remaining) and B

Drop	Drop	Drop	Instr.	Inst.	Recovery	Recovery
No.	Lat (°)	Lon (°)	Туре	No.	Lon. (°)	Lat. (°)
84	-20° 09.144	-175° 54.202	W	D34	20 09.059	175 54.353
83	-20° 13.491	-175° 55.146	W	D03	20 13.395	175 55.164
82	-20° 17.570	-175° 56.649	W	D25	20 17.506	175 56.621
81	-20° 22.408	-175°57.062	W	D50	20 22.349	175 57.097
8	-20° 27.167	-175° 56.345	S	57	20 27.121	175 56.382
7	-20° 31.614	-175° 57.319	S	58	20 31.544	175 57.319
6	-20° 36.789	-175° 57.740	S	60	20 36.171	175 57.800
5	-20° 40.529	-175° 59.229	S	47	20 40.596	175 59.163
17	-20° 41.841	-176° 04.267	W	D39	20 41.819	176 04.176
32	-20° 40.662	-176° 10.465	S	SP094	20 40.650	176 10.371
48	-20° 39.478	-176°16.684	W	D51	20 39.503	176 16.598
56	-20° 36.407	-176° 20.722	S	38	20 36.440	176 20.622
57	-20° 31.718	-176° 19.739	S	61	20 31.663	176 19.634
58	-20° 27.228	-176° 18.719	S	13	20 27.135	176 18.603
59	-20° 23.045	-176° 17.830	S	019	20 23.033	176 17.579
60	-20° 18.417	-176° 17.868	W	D44	20 18.509	176 17.808
61	-20° 13.856	-176° 17.582	W	D15	20 13.966	176 17.424
62	-20° 09.788	-176° 16.702	W	D62	20 09.827	176 16.611
63	-20° 04.944	-176° 15.653	W	D08	20 04.930	176 15.593
64	-20° 08.067	-176° 11.596	W	D32	20 08.008	176 11.515
72	-20° 06.455	-176° 07.700	S	SP-086	20 06.397	176 07.662

73	-20°09.223	-176° 05.331	S	SP-085	20 09.218	176 05.297
74	-20° 07.460	-176° 02.147	W	D11	20 07.387	176 02.146
75	-20° 10.501	-175° 58.868	W	D49	20 10.467	175 58.853
77	-20° 14.927	-175° 59.842	W	D09	20 14.888	175 59.763
80	-20° 19.282	-176° 01.103	W	D10	20 19.191	176 01.048
9	-20° 24.066	-176° 00.395	S	95	20 24.095	176 00.408
11	-20° 28.491	-176° 01.408	S	10	20 28.546	176 01.370
13	-20° 32.968	-176° 02.291	S	136	20 32.979	176 02.242
15	-20. 37.402	-176° 03.277	S	0078	20 37.309	176 03.207
16	-20° 39.002	-176° 07.203	S	093	20 38.849	176 07.166
33	-20° 38.271	-176° 10.186	S	0001	20 38.173	176 10.242
34	-20° 37.916	-176° 12.794	S	SP-092	20 37.911	176 12.827
47	-20° 35.016	-176° 15.716	W	D40	20 35.047	176 15.744
46	-20° 30.599	-176° 14.756	W	D07	20 30.625	176 14.765
45	-20° 26.146	-176° 13.777	S	SP-138	20 26.201	176 13.536
44	-20° 21.655	-176° 12.969	S	SP-141	20 21.730	176 12.735
66	-20° 16.906	-176° 13.528	S	3	20 16.771	176 13.462
65	-20° 12.493	-176° 12.548	W	D26	20 12.337	176 12.481
71	-20° 10.933	-176° 08.671	S	0056	20 10.755	176 08.671
70	-20° 13.674	-176° 06.350	S	SP-088	20 13.552	176 06.423
76	-20° 12.011	-176° 02.892	W	D55	20 12.023	176 02.883
78	-20° 16.421	-176° 04.191	W	D02	20 16.470	176 04.126
79	-20° 20.910	-176° 04.984	W	D06	20 20.917	176 04.988
10	-20° 25.588	-176° 04.736	S	17	20 25.585	176 04.732
12	-20° 30.094	-176° 05.204	S	75	20 30.087	176 05.151
14	-20° 34.533	-176° 06.199	S	002	20 34.420	176 06.206
35	-20° 36.229	-176° 09.488	S	SP-089	20 36.128	176 09.538
36	-20° 33.984	-176° 09.039	S	090	20 33.943	176 09.159
37	-20° 33.460	-176° 11.847	S	0032	20 33.529	176 11.966
38	-20° 31.786	-176° 08.511	S	0021	20 31.908	176 08.574
39	-20° 29.047	-176° 10.733	S	0055	20 29.198	176 10.810
40	-20° 26.794	-176° 10.402	S	SP-139	20 26.901	176 10.388
41	-20° 27.353	-176° 07.653	S	SP-137	20 27.408	176 07.648
42	-20° 24.600	-176° 09.880	S	0027	20 24.622	176 09.855
43	-20° 22.886	-176° 06.626	S	0077	20 22.863	176 06.645
67	-20°19.863	-176° 10.040	S	SP-087	20 19 769	176 10.091
68	-20° 18.115	-176° 07.316	S	SP-140	20 18.021	176 07.386
69	-20° 15.374	-176° 09.637	S	0007	20 15.281	176 09.648

Shot Line Log Campaigns I and II

<u>Seq</u> <u>#</u>	Line #	<u>Date</u>	<u>Time</u> (UTC)	<u>Date</u>	<u>Time</u> (UTC)
				[
1	Lau_Ax001				
2	Lau_A002	-	-	-	-
3	Lau_A028	29-Jan-09	00:54:00	29-Jan-09	10:01:18
4	Lau_A027	29-Jan-09	11:58:06	29-Jan-09	19:57:33
5	Lau_A026	29-Jan-09	22:52:00	30-Jan-09	07:11:37
6	Lau_A025	30-Jan-09	07:40:09	30-Jan-09	16:19:59
7	Lau_A024	30-Jan-09	16:46:52	31-Jan-09	01:34:16
8	Lau_A023	31-Jan-09	02:00:58	31-Jan-09	10:41:55
9	Lau_A022	31-Jan-09	11:11:57	01-Jan-09	19:34:40
10	Lau_A021	31-Jan-09	20:04:36	01-Feb-09	01:12:55
11	Lau_A022A	01-Feb-09	01:51:03	01-Feb-09	02:47:51
12	Lau_A021	01-Feb-09	03:12:38	01-Feb-09	08:00:02
13	Lau_A020	01-Feb-09	08:28:26	01-Feb-09	17:06:32
14	WTURNS	01-Feb-09	17:11:17	01-Feb-09	17:33:00

15	Lau_A019	01-Feb-09	17:33:37	02-Feb-09	00:28:16
16	Lau_A018	02-Feb-09	01:02:23	02-Feb-09	06:28:04
17	WTURNS	02-Feb-09	06:41:45	02-Feb-09	06:52:41
18	Lau_A017	02-Feb-09	06:59:59	02-Feb-09	12:32:00
19	ETURNS	02-Feb-09	12:36:00	02-Feb-09	12:56:00
20	Lau_A016	02-Feb-09	13:00:25	02-Feb-09	18:18:00
21	WturnB	02-Feb-09	18:24:40	02-Feb-09	18:45:00
22	Lau_A015	02-Feb-09	18:47:17	03-Feb-09	01:29:39
23	Lau_A014	03-Feb-09	02:11:30	03-Feb-09	10:35:49
24	Lau_A014A	03-Feb-09	10:44:33	03-Feb-09	12:08:13
25	Lau_A014B	03-Feb-09	12:11:42	03-Feb-09	13:50:28
26	Lau_A014C	03-Feb-09	13:52:51	03-Feb-09	18:24:07
27	Lau_A013	03-Feb-09	18:29:12	04-Feb-09	04:19:31
28	Lau_A013A	04-Feb-09	04:27:06	04-Feb-09	04:55:36
29	Lau_A012	04-Feb-09	04:58:09	04-Feb-09	13:01:02
30	Lau_A012A	04-Feb-09	13:11:51	04-Feb-09	13:22:09
31	Lau_A011	04-Feb-09	13:25:06	04-Feb-09	21:43:01
32	Lau_A011A	04-Feb-09	21:53:50	04-Feb-09	22:07:19
33	Lau_A010	04-Feb-09	22:15:28	05-Feb-09	08:14:49
34	Lau_A010A	05-Feb-09	08:19:35	05-Feb-09	08:36:05
35	Lau_A009	05-Feb-09	08:37:41	05-Feb-09	18:39:33
36	Lau_A009A	05-Feb-09	18:48:57	05-Feb-09	19:06:17
37	Lau_A008	05-Feb-09	19:15:00	05-Feb-09	21:24:19
38	Lau_A008	5-Feb-09	22:23:00	05-Feb-09	22:27:00
<u>38</u> 39	Lau_A008 Lau_A008	5-Feb-09 5-Feb-09	22:23:00 22:30:00	05-Feb-09 06-Feb-09	22:27:00 05:30:35
38 39 40	Lau_A008 Lau_A008 Lau_A007	5-Feb-09 5-Feb-09 6-Feb-09	22:23:00 22:30:00 05:44:13	05-Feb-09 06-Feb-09 06-Feb-09	22:27:00 05:30:35 17:09:57
38 39 40 41	Lau_A008 Lau_A008 Lau_A007 Lau_A006	5-Feb-09 5-Feb-09 6-Feb-09 6-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07	05-Feb-09 06-Feb-09 06-Feb-09 07-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52
38 39 40 41 42	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A	5-Feb-09 5-Feb-09 6-Feb-09 6-Feb-09 7-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10	05-Feb-09 06-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10
38 39 40 41 42 43	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005	5-Feb-09 5-Feb-09 6-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10	05-Feb-09 06-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05
38 39 40 41 42 43 44	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005 Lau_A028A	5-Feb-09 5-Feb-09 6-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57	05-Feb-09 06-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36
38 39 40 41 42 43 44 45	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005 Lau_A028A Lau_A008R	5-Feb-09 5-Feb-09 6-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51	05-Feb-09 06-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22
38 39 40 41 42 43 44 45 46	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005 Lau_A028A Lau_A008R Lau_A005A	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58
38 39 40 41 42 43 44 45 46 47	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005 Lau_A028A Lau_A008R Lau_A005A Lau_A005	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14
38 39 40 41 42 43 44 45 46 47 48	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005 Lau_A028A Lau_A008R Lau_A005A Lau_A005 Lau_A005 Lau_A005B	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26
38 39 40 41 42 43 44 45 46 47 48 49	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005 Lau_A028A Lau_A008R Lau_A005A Lau_A005 Lau_A005 Lau_A005 Lau_A004	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53
38 39 40 41 42 43 44 45 46 47 48 49 50	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005A Lau_A005A Lau_A005A Lau_A005B Lau_A005B Lau_A004 Lau_A004A	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41
38 39 40 41 42 43 44 45 46 47 48 49 50 51	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005 Lau_A008R Lau_A008R Lau_A005A Lau_A005 Lau_A005 Lau_A004 Lau_A004 Lau_A003	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50 10:24:00	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41 18:31:34
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005A Lau_A005A Lau_A005A Lau_A005A Lau_A005B Lau_A005 Lau_A004 Lau_A004 Lau_A003 Lau_A003	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50 10:24:00 18:35:07	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41 18:31:34 18:51:16
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A006A Lau_A005 Lau_A008R Lau_A005A Lau_A005B Lau_A005 Lau_A004 Lau_A004 Lau_A003 Lau_A003 Lau_A003 Lau_A002	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50 10:24:00 18:35:07 18:54:04	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41 18:31:34 18:51:16 04:51:36
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005A Lau_A008R Lau_A008R Lau_A005A Lau_A005B Lau_A005B Lau_A004 Lau_A004 Lau_A003 Lau_A003 Lau_A003 Lau_A002 Lau_A002A	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50 10:24:00 18:35:07 18:54:04 05:13:57	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41 18:31:34 18:51:16 04:51:36
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005A Lau_A008R Lau_A008R Lau_A008R Lau_A005A Lau_A005B Lau_A005B Lau_A004 Lau_A004 Lau_A003 Lau_A003 Lau_A002 Lau_A002 Lau_A001	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 9-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50 10:24:00 18:35:07 18:54:04 05:13:57 05:24:09	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 09-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41 18:31:34 18:51:16 04:51:36 05:21:26 15:26:45
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A006A Lau_A005 Lau_A028A Lau_A005A Lau_A005A Lau_A005B Lau_A005 Lau_A004 Lau_A004 Lau_A004 Lau_A003 Lau_A003 Lau_A002 Lau_A002 Lau_A001 Lau_A001A	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 9-Feb-09 9-Feb-09 9-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50 10:24:00 18:35:07 18:54:04 05:13:57 05:24:09 15:45:35	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 09-Feb-09 09-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41 18:31:34 18:51:16 04:51:36 05:21:26 15:26:45 19:26:53
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Lau_A008 Lau_A008 Lau_A007 Lau_A006 Lau_A006A Lau_A005A Lau_A008R Lau_A008R Lau_A005A Lau_A005B Lau_A005B Lau_A005B Lau_A004 Lau_A004 Lau_A003 Lau_A003 Lau_A002 Lau_A002A Lau_A001 Lau_A001B	5-Feb-09 5-Feb-09 6-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 7-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 8-Feb-09 9-Feb-09 9-Feb-09 9-Feb-09 9-Feb-09	22:23:00 22:30:00 05:44:13 17:38:07 05:05:10 05:18:10 15:15:57 15:53:51 19:19:07 22:30:48 00:12:11 00:25:46 10:09:50 10:24:00 18:35:07 18:54:04 05:13:57 05:24:09 15:45:35 19:30:25	05-Feb-09 06-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 07-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 08-Feb-09 09-Feb-09 09-Feb-09 09-Feb-09	22:27:00 05:30:35 17:09:57 04:58:52 05:17:10 15:03:05 15:50:36 18:59:22 22:23:58 00:06:14 00:23:26 10:01:53 10:21:41 18:31:34 18:51:16 04:51:36 05:21:26 15:26:45 19:26:53 21:51:34

<u>Seq</u> <u>#</u>	Line #	Date	<u>Time</u> (UTC)	Date	<u>Time</u> (UTC)
58	Lau B001	12-Feb-09	23:48:59	13-Feb-09	07:56:34
59	Lau B001B	12 T CD 09	07:50:44	13-Feb-09	08.11.58
60	Lau B002	13-Feb-09	07:00.44	13-Feb-09	17:47:23
61	Lau B002	13-Feb-09	17.40.44	13 Feb 00	18:08:57
62		13-Feb-09	18.13.52	14-Feb-09	02:31:53
63	Lau B004	14 Eeb 09	03.12.44	14-1 eb-09	11:48:01
64	Lau B004	14-Feb-09	11.51.15	14-Feb-09	12.07.30
65		14-Feb-09	12.13.17	14-1 CD-09	21.35.52
66	Lau B0054	14-Feb-09	21.30.04	14-Feb-09	21:55:52
67	Lau B006	14-1 eb-09	21.53.04	15 Eeb 09	07:48:07
68	Lau B006A	15 Eeb 09	07:40:50	15-1 eb-09	07.40.07
60	Lau_BOOOA	15-Feb-09	07.49.00	15-Feb-09	10.13.33
70	Lau_B007	15-Feb-09	10:02:00	15-Feb-09	10.17.31
70	Lau_B007A	15-Feb-09	10.23.39	15-Feb-09	10.39.10
70	Lau_B008	15-Feb-09	18:44:10	16-Feb-09	05:27:43
72	Lau_B009	16-Feb-09	07:21:26	16-Feb-09	10:55:33
73	Lau_B009A	16-Feb-09	16:58:52	16-Feb-09	17:16:01
74	Lau_B010	16-Feb-09	17:17:51	17-Feb-09	02:54:30
75	Lau_B010A	17-Feb-09	02:57:21	17-Feb-09	03:05:27
76	Lau_B011	17-Feb-09	03:19:49	17-Feb-09	12:07:22
77	Lau_B011A	17-Feb-09	12:10:00	17-Feb-09	12:33:36
78	Lau_B012	17-Feb-09	12:39:15	17-Feb-09	19:04:00
79	Lau_B012A	17-Feb-09	19:07:56	17-Feb-09	19:24:24
80	Lau_B013	17-Feb-09	19:25:38	18-Feb-09	03:41:25
81	Lau_B013A	18-Feb-09	03:45:10	18-Feb-09	04:02:30
82	Lau_B014	18-Feb-09	04:45:24	18-Feb-09	12:32:37
83	Lau_B014A	18-Feb-09	12:55:47	18-Feb-09	15:38:15
84	Lau_B015	18-Feb-09	15:46:00	19-Feb-09	00:19:12
85	Lau_B015A	19-Feb-09	00:39:45	19-Feb-09	00:50:23
86	Lau_B016	19-Feb-09	01:17:40	19-Feb-09	09:44:50
87	Lau_B016A	19-Feb-09	09:47:22	19-Feb-09	10:10:34
88	Lau_B017	19-Feb-09	10:13:24	19-Feb-09	19:14:08
89	Lau_B017A	19-Feb-09	19:16:17	19-Feb-09	19:40:32
90	Lau_B018	19-Feb-09	20:10:55	20-Feb-09	03:33:00
91	Lau_B018A	20-Feb-09	03:37:17	20-Feb-09	03:56:14
92	Lau_B019	20-Feb-09	04:40:09	20-Feb-09	10:00:28
93	Lau_B019A	20-Feb-09	10:04:29	20-Feb-09	10:22:50
94	Lau_B020	20-Feb-09	10:24:53	20-Feb-09	17:04:04
95	Lau_B020A	20-Feb-09	17:06:52	20-Feb-09	17:29:43
96	Lau_B021	20-Feb-09	17:32:20	21-Feb-09	02:23:56
97	Lau_B021A	21-Feb-09	02:26:17	21-Feb-09	02:33:58
98	Lau_B022	21-Feb-09	03:23:08	21-Feb-09	11:39:41
99	Lau_B022A	21-Feb-09	11:47:23	21-Feb-09	12:02:11
100	Lau_B023	21-Feb-09	12:16:34	21-Feb-09	16:36:00
101	Lau_B006R	21-Feb-09	16:42:37	22-Feb-09	03:35:52

102	Lau_B006RA	22-Feb-09	03:41:05	22-Feb-09	03:41:05
103	Lau_B007R	22-Feb-09	04:06:55	22-Feb-09	14:54:06
104	Lau_B023B	22-Feb-09	14:57:15	22-Feb-09	16:49:28
105	Lau_B002R	22-Feb-09	17:03:34	23-Feb-09	03:48:12
106	Lau B015R	23-Feb-09	04:08:02	23-Feb-09	04:08:02
100	Edd_Borlon	2010000	01.00.02	20100000	01.00.02
107	Lau_B015R	23-Feb-09	04:21:26	23-Feb-09	07:57:13
108	Lau_A001R	23-Feb-09	08:12:41	23-Feb-09	12:25:20
109	Lau_B013R	23-Feb-09	12:28:41	23-Feb-09	19:24:37
110	Lau_B023A	23-Feb-09	19:39:42	23-Feb-09	19:44:09
111	Lau_B012R	23-Feb-09	20:00:43	24-Feb-09	02:44:44
112	Lau_B011R	24-Feb-09	03:13:59	24-Feb-09	10:01:27
113	Lau_B024A	24-Feb-09	10:07:58	24-Feb-09	15:05:05

Instrument Deployment Map

Shot Line Map – Campaign I

Shot Line Map – Campaign II

Summary OBS Recovery Rates

Site		Time					
Number	Surface	Hooked	On Deck	SOI/W			
84	18:13	18:20	18:23	W			
83	19:34	19:45	19:48	W			
82	21:06	21:16	21:19	W			
81	22:26	22:36	22:39	W			
8	0:17	0:21	0:23	S			
7	1:37	1:42	1:44	S			
6	3.04	3.25	3.27	S			
5	4.40	4.49	4.52	S			
17	6.10	6.19	6.22	Ŵ			
32	7:45	7:52	7:55	S			
48	9.11	9.19	9.21	W			
56	10:42	10:45	10:48	S			
57	12:01	12:12	12:17	5			
58	13:38	13:46	13:48	6			
50	15:06	15:38	15:42	3			
59	13.00	13.30	17:16	3			
61	17.00	17.14	17.10	VV \\\/			
61	10.34	10.40	10.43	VV			
62	19:52	19:58	20:00	VV			
63	21:14	21:21	21:23	VV			
64	22:38	22:47	22:49	Ŵ			
72	0:07	0:14	0:16	S			
73	1:29	1:35	1:37	S			
74	2:46	2:52	2:54	W			
75	4:11	4:16	4:18	W			
77	5:31	5:38	5:40	W			
80	6:54	7:02	7:04	W			
9	8:25	8:31	8:33	S			
11	9:53	9:58	10:01	S			
13	11:21	11:29	11:31	S			
15	12:57	13:02	13:05	S			
16	14:29	14:37	14:39	S			
33	15:49	16:00	16:03	S			
34	17:16	17:24	17:28	S			
47	18:44	18:50	18:52	W			
46	20:11	20:14	20:17	W			
45	22:03	22:10	22:13	S			
44	23:34	23:43	23:46	S			
66	1:01	1:05	1:07	S			
65	2:27	2:36	2:38	W			
71	4:07	4:16	4:18	S			
70	5:39	5:47	5:50	s			
76	6:52	6:57	6:58	W			
78	8:25	8:36	8:38	W			
79	10:07	10:11	10:13	W			
10	11:35	11:43	11:47	S			
12	13:09	13:17	13:38	S			
14	15:06	15:18	15:21	S			
35	16:37	16:43	16:46	S			
36	17:54	18:04	18:06	S			
37	19.18	19.21	19.23	S			

38	20:34	20:38	20:41	S
39	22:00	22:05	22:08	S
40	23:25	23:33	23:35	S
41	0:37	0:43	0:45	S
42	1:57	2:04	2:06	S
43	3:20	3:31	3:33	S
67	4:44	4:54	4:56	S
68	6:08	6:18	6:20	S
69	7:29	7:36	7:38	S

Instrument Performance

Instrument performance was examined during the cruise by plotting record sections of the data. The analysis of channel noise in the following two tables is qualitative only; and is based on a quick look at 2 hours of data when there were no airgun shots recorded. Flag oscillation noise effects random sections of the signal on the SIO 3-component instruments. Instrument noise spikes and square-wave noise affects large amounts of the SIO 3-component instruments.

Deployment 1

Site #	Instr. #	Data Recorded (MBytes in SEGY files not raw)	R C	Recorded Channels Comments		Comments	
			Х	Y	Z	Η	(WHOI: X=EL1; Y=EL2; Z=ELZ; H=EDH) (SIO: X=0; Y=1; Z=2; H=3)
							G=Good; D=Dead; n=some noise; N = HighNoise; S = Spikes; s = spikes but probably useful N or n may indicate low output of the sensor or high environmental noise.
1.1	D15	975	G	G	G	G	
1.2	D44	975	G	G	G	G	
1.3	D02	975	G	n	G	G	
1.4	D49	975	G	G	G	G	
1.5		4X466	S	S	S	G	
1.6		4X466	S	S	S	G	
1.7		4X466	S	S	s	G	
1.8		4X466	S	S	S	G	
1.9		4X466	s	S	s	G	
1.10		4X466	g	g	g	G	a little spiky but not too bad
1.11		4X466	S	S	s	G	
1.12		4X466	S	S	s	G	
1.13		4X466	S	D	s	n	
1.14		4X466	S	S	s	n	
1.15		4X466	S	S	S	n	
1.16		4X466	S	S	S	G	
1.17	D39	1.862GB	G	G	G	G	
1.18	D08	975	G	G	G	G	
1.19	D32	975	G	G	n	G	
1.20	D25	975	N	n	G	G	
1.21	D03	975	G	G	G	G	
1.22	D62	975	G	G	G	G	
1.23		4X0	D	D	D	D	Power failure shortly after launch

1.24	S140	4X244	S	S	S	G	
1.25	D55	975	G	G	G	G	
1.26	D34	975	G	G	G	G	
1.27	D09	975	Ν	Ν	Ν	G	
1.28	D31	975	G	G	G	G	
1.29	D11	975	G	Ν	G	G	
1.30	D26	975	G	G	G	G	
1.31		4X244	S	S	S	n	
1.32		4X466	S	S	S	n	
1.33		4X466	S	S	S	G	
1.34		4X466	S	S	S	G	
1.35		4X466	S	S	S	G	
1.36		4X466	S	S	S	G	
1.37		4X466	S	S	S	G	
1.38		4X466	S	S	S	G	
1.39		4X466	S	S	S	g	
1.40		4X466	S	S	S	g	
1.41		4X466	S	S	S	g	
1.42		4X466	S	S	S	G	
1.43		4X466	S	S	S	G	
1.44		4X466	S	D	S	G	
1.45		4X466	S	S	S	n	
1.46	D07	1.862 GB	G	G	G	G	
1.47	D47	1.862 GB	G	Ν	G	G	
1.48	D51	1.862 GB	G	G	G	G	Partially flooded – data drive good – usual clock
							correction not possible.
1.49	D06	975	n	n	G	G	
1.50	D10	975	G	G	G	G	
1.51		4X244	S	S	S	G	H is very good.
1.52		4X244	S	S	S	n	ringy noise on H; may be an environmental source
1.53		4X244	S	S	S	n	ringy noise on H; may be an environmental source
1.54		4X244	S	S	S	G	H is very good.
1.55		4X244	D	D	D	G	L28 not plugged in. Spikes appear in recorded
							"data" anyway, so this noise problem probably
							could have been observed in the lab with a simple
							look at the self-noise of the instrument.
1.56		4X466	S	D	Ν	G	
1.57		4X466	S	S	S	Ν	
1.58		4X466	S	S	S	G	
1.59		4X466	S	S	S	G	

Deployment 2

Site #	Instr. #	Data Recorded (MBytes in SEGY files not raw)	Good Channels		ls	Comments	
			Х	Υ	Ζ	Η	
2.60	D44	888	G	G	G	G	
2.61	D15	888	G	G	G	G	
2.62	D62	888	GGGG		G		
2.63	D08	888	G G G G		G	Odd stuff on noise test records – disk spins?	
2.64	D32	888	GGGG		G		

2.65	D26	888	G	G	G	G	Odd stuff on noise test records – disk spins?
2.66		4X222	S	S	s	G	
2.67		4X222	S	S	S	G	
2.68		4X222	S	S	S	G	
2.69		4X222	S	S	S	G	
2.70		4X222	S	S	S	Ν	
2.71		4X222	S	S	S	G	
2.72		4X222	S	S	S	G	
2.73		4X44	S	S	S	G	
2.74	D11	888	G	G	G	G	
2.75	D49	888	G	G	G	G	
2.76	D55	888	G	G	G	G	
2.77	D09	888	G	G	G	G	
2.78	D02	888	G	G	G	G	
2.79	D06	888	G	G	G	G	
2.80	D10	888	G	n	G	G	
2.81	D50	888	G	G	G	G	
2.82	D25	888	G	G	G	G	
2.83	D03	888	D	G	G	G	
2.84	D34	888	G	G	G	G	Large spikes in test records (121-240) = pings to
							instrument for recovery.

Assessment of OBS Operations and Instrumentation

We deployed all 59 instruments initially; we then recovered 25 and immediately redeployed them for a total of 84 deployments and recoveries. Deployments took ~10 minutes on site and on average about 30-40 minutes from station to station to complete. This was much faster than planned (1 hour + transit as per OBSIP guidelines). Recoveries also took much less time than planned, 1.5 hours from the time one instrument landed on deck to the next (as compared to the 2.5 hours + transit as per OBSIP guidelines). Overall this saved us considerable time, time which was used to make up for lost time due to hurricane Hettie and problems with the guns. The instrument handlers worked long hard hours during the deployments and recoveries and should be commended for that effort.

WHOI: The WHOI D2 instrument is a small compact OBS. The sensor is decoupled from the electronics and battery package, resulting in low ocean current induced noise on the sensor. This is an indispensable feature of this instrument and all OBSIP instruments should have the geophone decoupled from the instrument body. The data was overall of very high quality with only a little instrument noise due to hard drives spinning once an hour or so (easily filtered out due to its high frequency). The usual ship noise is evident throughout much of the records.

On the down side, according to the captain the radio beacon was only detectable by the bridge just off the ship's bow. Dead flashers or heavy fog and these instruments could be lost. There were four WHOI instruments with partial recovery aides that we recovered during daylight hours.

For multi-deployment experiments, obtaining data at sea is indispensable (to assess firing intervals and other data acquisition parameters). Mini-seed data was readily available from the WHOI group, but not readable by the standard rdseed software. That was unfortunate and required us to cobble together a quick shot file to get a section of segy data for analysis. If a miniseed reader was available for general use, it would have saved us some time, since we didn't really need the shot gathered data at that point to assess the firing interval. A data *viewer* is not enough, since a scientist needs to be able to manipulate the data stream.

Micro-seismicity in the Lau basin is high (one identifiable earthquake every ~4 minutes). This background noise appeared to be the major source of noise on the WHOI instruments. At the time of this writing a full data check has not been made, but from the preliminary analysis it seems that any self-noise of the instrument is much less than the micro-seismic noise (apart from the drive noise mentioned earlier).

One ball leaked a small amount: about 1.5 pints of water including very fine sediment. The glass ball design makes it difficult to make any repairs aboard the ship. Luckily we did not need to redeploy this particular instrument.

SEGY cut files are 1.7 GB each for the stations deployed the longest and are too large to use efficiently. A better method would be to have separate files for each channel. WHOI cuts the channels together, SIO cuts them out separately. It would be better for the users for both groups to do it the same way (separate files for each channel).

SIO: The SIO instruments are frame-mounted devices attached to a large anchor. From an overall operational perspective, instrument recoveries and deployments were not appreciably longer or shorter than for the WHOI instruments, though the techs seemed to think otherwise. The radio beacon and flashers seem to work well for the SIO instruments.

Because the 3-component sensor is mounted to the frame and anchor, it picks up a considerable amount of current generated oscillation/noise; including a persistent ~6 and ~12 Hz "hum", probably due to the orange recovery flag, that comes and goes throughout the records depending on current speeds. Many hours of data on each instrument appear to be obliterated by this noise, because it is large enough to completely swamp the 3-component channels. Due to its very high amplitude, Butterworth band pass filtering does not remove this noise, but perhaps more exotic filtering would help.

Figure. (Possible) flag or other current-induced noise on the vertical channel.

Almost all 3-component channels examined to date exhibit strong instrument noise of unknown origin that appears as large partially-aliased spikes separated by perhaps 60 ms, and at times what looks like a 4 Hz square wave, also of significant amplitude (a 4Hz spectral line can often be observed in the spectrograms). Preliminary analysis shows reveals spiky data on almost all 3-comp. channels; we have not yet examined all records for the 4-Hz "square" wave. Neither can be effectively filtered from the data. The spikes in particular are a form of white noise *that flatten the amplitude spectra of the data and make the records very ringy when high-pass filtered* (filtered spikes become sinc-like functions). If the 4Hz spectral line is truly a square wave, then it too cannot be effectively filtered out by a typical bandpass or highpass procedure due to its large bandwidth.

The SIO hydrophone data for themost part looks very good; it does not suffer from either the flag problem or the instrument self-noise problem.

Passcal SEGY data (continuous data) was readily available from the SIO group and easily read by a psegy2mat program. This was very useful for getting a quick look at the data before re-deployment and shooting. All of the psegy continuous data and segy shot-cut data was provided on a 1TB disk to the PI at the end of the cruise. The SIO tech had to cut the data several times over several days due to missteps and mistakes in the header information and database (typos and bad math). Finding and following up on these problems was a huge waste of time for the science party and the SIO tech. Such mistakes would have been largely avoided if there was an agreed upon format for the Langseth shot log and a more careful data processing procedure.

Both Groups: A simple spec sheet with channel configuration, sensor information, and a nominal sensor response should be provided. Certain important details about the instruments were unknown by the instrument operators at sea. For example, each group records four channels, but what channel is what component of the instrument was not immediately known. Furthermore, the sign of the channels was (and still is) also unknown. Is inward pressure on the hydrophone a positive count or negative? Does the vertical component record vertical motion positive up or positive down? And what do the instruments actually record? Is it displacement, velocity, or acceleration? What about the hydrophone? Is it really pressure?

The two groups do not provide the same data products: the shot cut data do not have exactly the same header formats. Although different PIs may want different info in the header, all of the basic fields should be filled in and filled in the **same** manner. For example, SIO provides the trace start time and the shot time in different fields, because they are slightly different values, whereas the WHOI header only give the trace start time – the fact that the shot time is not exactly the same as the first sample time is lost and will generate a small amount of round-off

noise in the data. Also, one group uses big-endian byte order, the other uses little-endian byte order. They should use the same.

It would be very useful if OBSIP, as a group, provided a couple of different types of data readers for their data. For example, segy2mat codes for matlab are available and an official OBSIP version would be greatly appreciated.

The OBSIP groups should agree upon a standard Shot Log format and then insist that the Langseth science techs provide that format and that format only. Since there is no standard, the shot log format causes considerable amounts of time to be wasted by the science and OBSIP parties (reformatting, misunderstanding of fields, etc).

In addition, because the OBS staging areas and Main science labs are located far from one another, the telephone was used to send drop location information from the Main Lab to the OBS lab. This led to several typos in the OBS database of drop points and thus typos in the SEGY headers. A better system would be to have the science party compile a well-checked list of the drop points for the OBS operators.

Assessment of Ship Operations

The planned experiment consisted of 77 OBS deployments along a 150 km section of the Eastern Lau Spreading Center with ~47 lines of ridge-parallel and ridge-perpendicular airgun shots to cover the area and provide seismic sources for imaging the crust and uppermost ~2 km of the mantle. Several days of contingency mapping in the western part of the basin were also planned.

Several days of weather (and marine mammal) contingency were built into the cruise plan, including contingency time for both OBS operations and shooting. After passing through Cyclone Hettie that occurred just after all OBS were deployed and caused 36-48 hours of delay, we had excellent weather. A big surprise to all was that we did not encounter any marine mammals during operations and we were not delayed on that score. We were able to make ~10% greater OBS deployments (84 versus 77) and we shot ~120-125% more seismic line than planned.

The A-frame winch used for OBS deployments is poorly located, being on the main deck and subject to the constant sloshing of seas over the starboard side. It shows significant rust, got stuck on us once, and may prove to cause problems down the road. Perhaps a better placement would be on the level above, with the controls at the A-frame. That would allow one operator to control both the A-frame and the winch, rather than the two operators that are currently required.

The main boom/winch and the CTD winches were inoperable and we instead used a streamer capstan, a rope, and several pulleys to perform the OBS release test. This test took ~6-7 hours longer than anticipated due to the inoperable winches.

During heavy seas significant water rushes over the starboard rail and could cause serious injury to OBS operators. Luckily we escaped such problems.

The gunners worked long hard hours and were very dedicated to keeping the airgun array fully functional and by the end of the cruise the airgun array was working almost flawlessly, however throughout most of the shooting we had multiple gun drop outs and many timing issues that required work at the ends of most of the seismic lines and in a few cases during the lines. We did loose full volume at the ends of the lines during repairs, which was better than loosing time to gun repairs (the Chief Scientists decision). I understand that the guns had not been used for several months, a contributing factor surely, but also there didn't seem to be enough spare parts aboard the ship for full maintenance of the problems.

The marine office did not have our permits fully in order to operate in Tongan waters and our permit expired 5 days before the end of the cruise forcing seismic operation to end early. This is an unbelievable oversight. The party in charge assured us via email that everything was in order even though it was clear to us that it was not and he did not understand that the captain was not about to risk his license over the issue. By the time it was finally admitted that the permits were not extended to the full cruise duration, it was too late to get the necessary paper work from the Tongans. We lost ~4-5 days of seismic work because of this. Luckily for us, we had such good weather that we were already ahead of schedule and by trimming off the ends of some expected lines and

not shutting down for repairs, we were able to squeeze in all of the planned seismic lines. For the extra 5 days at the end where we didn't have Tongan permits, we carried out some underway-geophysical mapping in the western basin.

Pre-cruise the PI received good feedback concerning the cruise plan and science objectives from Anthony Johnson (tech in charge) and Jeff Rupert at the marine office. This feedback allowed me to redesign the experiment a bit to mesh better with the operational constraints of the ship - something that saved us much time later. The lack of full permits for the cruise window (discussed above) was clearly the low point of the cruise.

The cruise was scheduled in the middle of the cyclone season for that area. We lobbied for and received 4-5 extra weather days (1/3 chance of getting hit by a cyclone during the cruise) during the pre-cruise scheduling. We did get hit by Cyclone Hettie early on and lost a couple of days, but made that up as the cruise progressed due to subsequent excellent weather and no OBS problems. In the end, those extra days meant a world of difference in getting all of the science objectives completed. The scheduling process was very opaque and as Chief Scientist I felt that I was usually last to know of schedule changes and often found out through third parties. There was a last minute rearrangement of the inbound transit leg when it was "discovered" that Tonga would not be able to provide sufficient fuel for the ship. This was something I had previously pointed out to the Lamont marine office perhaps 2 months earlier, but was ignored. I ultimately provided them with an alternative: stop-over in Pago-Pago, Samoa for fuel.

The marine technical party was adequately staffed with seasoned veterans (and one new tech) who worked long hard hours to make sure all of our science objectives were met. Anthony Johnson was indispensable in getting this cruise through to completion. The science party worked well together and were willing to listen to each others' (and my) comments and criticisms and effectively modified operations to be as efficient as possible. They did an excellent job of training the watch standers and an excellent job of communicating their needs, thoughts, and concerns to the Chief Scientist. There was an unexpected strong sense of common purpose to achieve the science objectives. Lamont should know that they have a very good group here and I hope that the marine office considers their comments/concerns carefully. Also, Gunners need more spare parts to keep the guns going at top performance.

The marine techs should insist that OBSIP come up with an agreed-upon Standard Shot Log Format and then they should always provide that format and that format only. Since there is no standard, the shot log format changes cruise-to-cruise and causes considerable amounts of time to be wasted by the science party and the OBS party (reformatting, misunderstanding of fields, etc).

Days lost at sea due to weather and equipment: 2 lost days for Cyclone Hettie, but was absorbed in contingency time. Also 1-2 hours per day lost to gun repairs, but this time was also included in our contingency time. 6-8 hours lost due to inoperable winches (used a slow streamer spool instead as noted above); this was absorbed in contingency time. 4-5 days of lost seismic shooting due to missing permits performed mapping contingency instead.

APPENDICES

APPENDIX 1: OBS Instrument Configuration

WHOI OBS

Hydrophone: High Tech® HTI-90-U Geophone: Geospace® 4.5 Hz GS-11D Data Logger: Quanterra QA330 24-bit A/D. Dynamic range: 135 dB. Data compression. Sample Rate: 200 Hz

Scripps OBS

Hydrophone: High Tech® HTI-90-U Geophone: Mark L28 3-component geophone Data Logger: L-Cheapo 2000 (LC2000) Sample Rate: 200 Hz

Instrument Channels

		SIO Ir	nstruments	
Channel	Description	Polarity	Output	Туре
			(Volts/):	
0	Х		m/s	Mark L28
1	Y		m/s	Mark L28
2	Z		m/s	Mark L28
3	HYD		μPa	High Tech HTI-90-U
Convention for 3-comp.			-	

		WHOI I	nstruments	
Channel	Description	Polarity	Output	Туре
			(Volts/):	
ELZ (1)	Vertical		m/s	Geospace 4.5 Hz GS-11D
EL1 (2)	North-South		m/s	Geospace 4.5 Hz GS-11D
EL2 (3)	East-West		m/s	Geospace 4.5 Hz GS-11D
EDH (4)	Hydrophone		μPa	High Tech HTI-90-U
Convention	for 3-comp.			

- WHOI and presumably SIO instruments contain a two-ring Gimbals system that can be accidentally inverted within the sensor casing. If one ring is inverted, then the vertical component is up side down. If two rings are inverted, then the vertical is correct, but the horizontals are inverted (west becomes east and north becomes south).
- Martin R. says that SIO electronics do not invert the polarity.

Instrument Responses

Nominal Responses									
Туре	Zeros	Poles	Corner	Coil	Sensitivity	Damping			
			Freq						
Mark L28	Two at zero	-19.79 + 20.19i	4.5 Hz	120 ohms	20.4 V/m/s	0.7			
		-19.79 - 20.19i							
Geospace 4.5 Hz GS-	Two at Zero	-19.792 -20.192i	4.5 Hz	4000	32 V/m/s	0.7			
11D		-19.792+20.192i		ohms					
High Tech HTI-90-U	0+0i	-29.5770+0i							
	-0.42553+0i	-0.36329+0i							

APPENDIX 2: WHOI OBSIP Cruise Report

L-SCAN experiment, Jan-Mar 2009 R/V Langseth

Summary:

The Ocean Bottom Seismograph (OBS) group at the Woods Hole Oceanographic Institution provided 20 "D2" instruments plus two spares (22 total) through the Ocean Bottom Seismograph Instrument Pool (OBSIP) in support of the "Lau Spreading Center Active source iNvestigation (L-SCAN). All deployments and recoveries, as well as the airgun work were handled from the R/V Langseth. Twenty-one D2 instruments were deployed initially. After shooting the airguns to these instruments, seventeen D2s were recovered. We then redeployed seventeen D2s at other sites further north. After another round of shooting, all 21 D2s on the bottom were recovered. In all there were 38 D2 deployments, and every one was successfully recovered and had recorded data over the entire deployment period.

The OBS group from Scripps Institute of Oceanography (SIO) was also present with 39 of their "L-CHEAPO" instruments. For deployments and recoveries, the OBSIP personnel were split into two 12-hour shifts, with at least one tech from each institution on each shift. This allowed for around the clock operations without regard to instrument type.

Deck operations:

Deployments and recoveries went without major incident, using the A-frame and a temporary electric winch to lift the instruments over the gunwale. This worked reasonably well, and was far preferable to the HIAB crane. The only major issue was that the line jumped the sheave several times. This complicated recoveries, twice forcing D2s to be hauled up by hand, and once forcing the HIAB to be used. The winch had some minor quirks and a switch failure, but fortunately these problems did not impede the recoveries. An issue that has been noted in past cruises on the Langseth is that tag lines can become jammed in the narrow gaps along the gunwale. This did not present a major difficulty, but it did require extra care and attention. The addition of cleats along the gunwale would ease the handling of tag lines. The D2s and support equipment were housed in a 20-foot lab van stored on the main deck. This is convenient for preparing instruments and debriefing them. Unfortunately, the deck is not flat, so the van twists as it is secured, jamming the double doors shut. All operations were carried out through the side door. There are times when being able to open the rear doors would be beneficial. A GPS antenna and an Iridium satellite phone antenna were mounted to the rails on the streamer deck when the ship was in port in Astoria, Oregon. These provide signals to the interior of the van. Upon arrival in Tonga, the GPS signal was weaker in the van than when it had left Astroia. A basket of gas canisters had been secured to the rail where the GPS antenna was located. This both partially blocked the view of the sky and crushed the antenna cable. The antenna was moved over away from the basket, and the cable was re-terminated after removing the damaged section. The GPS signal improved after this.

Recoveries:

The D2s and L-CHEAPOs use the same acoustic release system, made by Edgetech/ORE, to dissolve a burnwire and drop an anchor to release the instruments. Thus both groups used the same model 8011A acoustic deck box and hull-mounted transducer to communicate with their instruments. There were no major problems with the releases. In several cases the replies from the ocean bottom were inaudible, but the instruments clearly received and responded to all commands, releasing as expected. Once the instrument had released the reply signals became clearly audible. This problem was common to both the D2s and L-CHEAPOs. This is likely a function of the makeup of the ocean floor. A few D2s needed multiple commands to be sent before they were successfully received and acknowledged. In all cases, the instruments dropped their anchors within the 15 minutes of confirming the first release command. No repeat burns were required. Spotting the instruments generally

happened quickly once they were on the surface. The D2s have a very low surface profile, and thus are more difficult to spot than the L-CHEAPOs. The addition of a fluorescent orange flag to the D2s on this cruise increased their visibility significantly compared to previous cruises. The D2s are equipped with a radio beacon, to alert the bridge to their presence on the surface and ideally to allow for a Radio Direction Finder (RDF) to assist in locating the instrument. On most vessels this works well. However, on the Langseth, the RDF on the bridge was unable to detect the radio beacons until they were within about 100 meters, after they had already been spotted.

Water leak in D51:

The only major D2 instrument issue was a water leak in number D51, which was deployed at site #48 over both halves of the experiment. The main 17" glass ball, which houses essentially all the electronics, took on roughly a pint of water. The water had caused the instrument to shut down during the recovery process, so normal debrief was not possible. The ball was opened as soon as possible and all components were removed, cleaned and dried. Luckily damage was minor considering the quantity of water involved. While some neighboring components were severely corroded, the 2.5" hard drive itself was unharmed. By installing the hard drive into a spare baler, data were retrieved for the entire deployment up until the last half hour before recovery. The offset of the internal clock to UTC was not captured at recovery. The drift rate had to be inferred by comparing shots that had fallen at the same locations but at different times. Using this drift rate and the pre-deployment clock offset the data were clock corrected appropriately.

Data quality:

Data were recovered from all 38 D2 deployments, and analyzed preliminarily using Cimarron, a proprietary M-SEED viewer from Quanterra, the designer of the data loggers used in the D2s. There are no gaps in data on any of the instruments. In a few cases one of the horizontal channels of the geophone showed a low signal level compared to the other two channels on the same instrument and compared to the rest of the instruments. This is a somewhat subjective observation, and the shots are all clearly visible, so this may prove to be inconsequential. The only case where shots are not visible at all is channel EL1 on D03 deployed at site #83. The other two geophone channels and the hydrophone all look fine. See the attached spreadsheets for a summary of the performance of each channel on each deployment. A particular type of noise was observed in data from many of the instruments. This noise occurred at intervals from 1 to 8 hours (depending on the buffer size of the data logger and the amount of compression applied), each time the baler (hard drive) in the instrument turned on. It manifests as several bursts of a signal at 70Hz lasting for several seconds each over the course of a few minutes. In some cases impulses with low frequency ringing and noise spikes accompany these 70Hz bursts. These noise spikes reach amplitudes in excess of 10000 counts in a few instruments. The character of the noise for each instrument seems to be fairly consistent over the course of a deployment, although there were a few that changed over the deployment. According to personal communications with the chief scientist these noise bursts are easily distinguished from any real seismic event, and so should pose little to no problem in data processing. If necessary the times of these events can be predicted accurately for each instrument to aid processing. The attached spreadsheets also contain a brief description of the character of the baler turn-on noise. With the exception of D51 (see "Water Leak", above), data from all instruments were clock corrected using offsets obtained at the beginning and end of the deployments by comparing the time of the internal Seascan real time clocks to the internal GPS receivers of the instruments. The data were then processed into SEGY format.

Lau Basin Active Cruise, Jan-Mar 2009 Data Quality Summary, Sorted by Sensor

	LBA 1, In water							LBA 2, In water
Sensor	Site	D#	Baler turn- on noise	Bad channels	Site	D#	Baler turn- on noise	Bad Channels
2	LBA02	D44	large	all good	LBA60	D44	small	all good
4	LBA20	D25	small	EL1 very low output, EL2 low output	LBA82	D25	small	all good
5	LBA04	D49	moderate	EL2 low, seems like a long settling period (~2 days)	LBA75	D49	moderate	all good
6	LBA48	D51	large	EL2 weird half cycle bumps ~.25sec width			Left dow	n over both deployments
8	LBA03	D02	small	EL2 low output?	LBA64	D32	moderate	all good
13					LBA74	D11	none	all good
14	LBA17	D39	large	all good			Left dow	n over both deployments
16	LBA01	D15	moderate	all good	LBA61	D15	moderate	all good
17	LBA47	D40	very large	EL2 low? (baler noise much worse at beginning than at end of deployment)			Left dow	n over both deployments
19					LBA80	D10	none	EL2 low output
24	LBA46	D07	large	all good (baler noise much worse at beginning than at end of deployment)			Left dow	n over both deployments
25	LBA21	D03	small	all good	LBA83	D03	large	EL1 no output on bottom
26	LBA18	D08	very large	all good	LBA63	D08	moderate	all good
31					LBA77	D09	moderate	all good
34	LBA29	D11	none	EL2 low output				
37	LBA28	D31	large	all good				
39	LBA19	D32	moderate	geophone channels seem somewhat noisy				
40	LBA30	D26	small	all good	LBA65	D26	small	all good
42	LBA22	D62	large	all good	LBA62	D62	large	all good
45	LBA49	D06	small	EL2 slightly low output?	LBA81	D50	large	all good (baler noise much worse at beginning than at end of deployment)
48	LBA27	D09	none	all geophone channels seem to have low output (~10k counts max amplitude shots)	LBA78	D02	small	all good
49	LBA50	D10	none	all good	LBA84	D34	small	all good
50	LBA26	D34	small	EL2 Low	LBA79	D06	large	all good
52	LBA25	D55	large	all good	LBA76	D55	small	all good
N/A		D50		Not deployed		D31		Not Deployed

APPENDIX 3: Assessment of Background Noise and Firing Interval

Shot numbers 1:120 and 121:240 in the SEGY records are fake shot numbers with times for when the airguns were no longer firing. The records occur every 60 s and the data is cut with 60 s traces, so these records constitute two x two-hour blocks of shot-free data, with the exception that in both cases the last shot of Campaigns I and II occurs only a few minutes into these two blocks. Therefore, one can examine the ring-down of the seismic source unimpeded by following shots.

Figure. Station 49 (deployment 1). Last shot. Station is located ~8km from the shot.

Figure. Station 49 (deployment 1). RMS amplitude (RMS of 10 point window) of last shot. Station is located ~8km from the shot.

Figure. Station 04 (deployment 1). RMS amplitude (RMS of 10 point window) of last shot. Station is located ~38km from the shot.

For a station located 8 km from the source, the time for the shot noise to dissipate is \sim 140 s after the first arrival. For a station located 38 km from the source, the time for energy dissipation is \sim 180 s after the first arrival. For stations >38 km from the source, one should consider 210 s shot intervals or larger.

APPENDIX 4: Marine Mammal Observation Summary

No marine mammals (or turtles) observed during the airgun operations. One green turtle sited during postseismic mapping phase (March 3). Small pod of pilot whales spotted on transit to port. Preliminary search for large baleen whale calls in the OBS data returned nothing.

APPENDIX 5: OBS Deployment & Logging Protocol

MGL0903 A Johnson

15 minutes before arrival

Bridge \rightarrow M-Lab, M-Deck: "15 minutes from drop site XX"

~1200 m before arrival, bridge slows

Bridge slows to 3 knots Bridge \rightarrow M-Lab, M-Deck: "1200 m to drop point, slowing to 3 knots"

ELOG: Make an elog entry when the ship begins to slow for deployment: Type: OBS Deploy: Approach Subject: Approaching site XX

50m before drop point

Bridge \rightarrow M-Lab, M-Deck: "50m to drop point, slowing to 0 knots

 $M-Lab \rightarrow M-Deck$: "release instrument" or $M-Lab \rightarrow M-Deck$: "release when ready"

Type: OBS Deploy: Drop Subject: Released OBS XX Entry (edit in later if unavailable at drop) Serial: XXXX Release ID: XXXXX

OBS Lab done with release testing

OBS Lab \rightarrow Main Lab: "Done with release test, ready to transit to next site" Main Lab \rightarrow Bridge: "Done with release test, ready to transit to next site"

ELOG: Make an entry when the ship starts for the next point: Type: OBS Deploy: Acoustics OK/Transit to next Subject: Acoustics OK

APPENDIX 6: OBS Deploy Log Keeping

MGL0903 2009-01-25

Five items should be logged for each deployment:

Arrival on site, ie, when the ship slows and begins approach. Release of instrument Multibeam secured End of acoustic tests, begin transit to next Multibeam pinging and logging

When	Туре	Subject	Text
Arrival on site, ie, when the ship slows and begins approach.	OBS_Deploy:Approach	OBS XX approach	
Release of instrument	OBS_Deploy:Released	OBS XX deployed	SOI/WHO

			Lat: XX XX.XXX Long: XXX XX.XXX Depth: XXXX m
Turn multibeam off	Multibeam	Multibeam secured	Secured for acoustics ops
End of acoustic tests, begin transit to next	OBS_Deploy:Disabled	Transit to next	Acoustics OK
Turn multibeam on	Multibeam	Multibeam pinging and logging	

Additional comments on speed or meters to/from site may be useful. Note also anything anomalous or unusual.

APPENDIX 7: Line Change Orders

MGL0903 Line Change Orders, v 1.0 2009-01-30 A. Johnson

Bridge should notify 30 mins before wheel over point. Alert Watch Leader at this time. Bridge will also notify before turn begins.

Coming off line

In Spectra, find the Line Control windows on the lower left screen. Watch the helmsman display on the left side of the lower right screen.

Watch the Velocity Along Track (VA) on the spectra display. Once VA drops below three you must end the line and either begin the next or switch to internal cycle.

If guns are pulled early for maintenance, or the source is otherwise degraded, log a separate LGSP entry in ELOG:

Туре	LGSP
Subject	linename> LGSP XXXX
Text	Why no longer good (eg. "Air leack S4, picking up for repair")

Note EOL in ELOG:

Туре	EOL
Subject	EOL ename> SP XXXX
Text	

After disabling shooting, go to the Digishot system and switch to internal triggers. Set the shot cycle to 20s. Enable the spare guns (one at a time). NOTE THE DIGISHOT GUN CONFIG BEFOREHAND.

Nav Logs

Update and close out the Nav Line Log.

Update and sabve the Nav Sequence Log.

Create and fill out a new Nav Line Log for the next line.

Observer Logs

Update and close out the Observer Line Log.

Update and save the B15 Log.

Create and fill out a new Observers Line Log for the next line.

Update the Line Board

Prepare the Spectra Line Control Node		
Select the next line (right-click on th	e line name).	
Update sequence number (right next when changing lines.	t to line name). Sequence numbers should always	increment
Update shot number: first shot shoul	d be sequence $x 1000 + 21$.	
eg, for sequence 7 first shot should b	be 7021.	
make sure 20 run-in and 0 run-out s	hots are configured	
Make sure shot type is DAlong Trac	k.	
Make sure interval is 500 meters		
Make sure the line is going in the rig	ht direction. Reverse line if necessary.	
Make sure beneath the ENABLED/D	ISABLED button "Online and Approach" is se	lected.
Prepare the shotlog		
Switch to the NavLog workspace on s	spectra 1	
Close the nav log.	-1	
Click 'setup' and select the new line.		
When coming on to line		
Turn off the spare guns in Digishot.		
As the ship approaches the line, watch the vel	locity along track. Velocity along track (VA) sho	uld be 3.0
knots or better before enabling.		
Prepare Digishot		
Set Digishot for external triggers.		
Set Digishot to shooting mode.		
Enable shooting in Spectra		
Note approach in ELOG		
Туре	SOL	
Subject	SOL ename> FSP XXXX	
Text	FSP XXXX	
If not the same as SOL, note FGSP in ELOG		
Туре	FGSP	
Subject	linename> FGSP XXXX	

Text FGSP XXXX

Update and save the Nav and Observer logs, and the B15.

APPENDIX 8: Local and Global Earthquakes Occurring during the OBS experiment

FILE CREATED: Wed Mar 4 02:42:50 2009 Global Search Earthquakes= 12 Catalog Used: PDE Date Range: 2009/01/24 to 2009/02/28 Magnitude Range: 6.0 - 10.0 Data Selection: Preliminary Data Only

CAT	YEAR	MO DA		ORIG TIME	LAT	LON	DEP M	AGNITUI	ЭE
PDE-Q	2009	01 2	4	012839.35		-28.25	-176.	70 10	6.0
PDE-Q	2009	02 0	2	175321.77		-13.58	-76.	53 21	6.0
PDE-Q	2009	02 0	9	140902.93		-6.57	-81.	12 15	6.0
PDE-Q	2009	02 1	1	173450.66		3.90	126.	40 20	7.2
PDE-Q	2009	02 1	1	182511.60		4.03	126.	78 35	6.0
PDE-Q	2009	02 1	2	034939.73		3.93	126.	40 26	6.0
PDE-Q	2009	02 1	2	131507.43		4.05	126.	57 35	6.3
PDE-Q	2009	02 1	5	100449.30		-5.87	-80.	91 21	6.1
PDE-Q	2009	02 1	7	033054.45		-30.82	-178.	64 13	6.0
PDE-Q	2009	02 1	8	215345.23		-27.44	-176.	33 25	6.9
PDE-Q	2009	02 2	2	174522.53		3.68	126.	56 32	6.0

PDE-Q 2009 02 28 143305.42 -60.47 -24.75 10 6.3 FILE CREATED: Wed Mar 4 02:51:28 2009 Geographic Grid Search Earthquakes= 3 Latitude: 14.000S -24.000S Longitude: 180.000E -175.000E Catalog Used: PDE Date Range: 2009/01/24 to 2009/02/28 Data Selection: Preliminary Data Only YEAR MO DA ORIG TIME CAT LAT LON DEP MAGNITUDE PDE-Q 2009 01 27 005458.44 -17.69 176.00 35 4.9 PDE-Q 2009 02 04 031426.39 -23.88 179.76 533 4.6 PDE-O 2009 02 11 135243.80 -16.21 178.32 21 5.7 FILE CREATED: Wed Mar 4 02:55:18 2009 Geographic Grid Search Earthquakes= 24 14.000S -24.000S Latitude: Longitude: 170.000W -180.000W Catalog Used: PDE Date Range: 2009/01/24 to 2009/02/28 Data Selection: Preliminary Data Only YEAR MO DA ORIG TIME LAT LON DEP MAGNITUDE CAT PDE-Q 2009 01 24 090158.05 -19.58 -179.11 671 5.2 PDE-Q 2009 01 24 175820.96 -21.06 -178.05 487 4.2 PDE-Q 2009 01 25 111816.46 -18.42 -174.48 42 4.6 PDE-Q 2009 01 26 115439.62 -17.80 -178.59 579 5.8 PDE-O 2009 01 27 062913 -17.84 -178.68 601 5.9 PDE-O 2009 01 28 123942.83 -16.97 -172.07 10 5.5 PDE-Q 2009 01 28 224757.27 -17.62 -178.47 537 4.7 PDE-Q 2009 01 30 033735.16 -15.05 -174.85 35 4.3 2009 01 30 034710.93 -15.39 -174.47 PDE-Q 10 5.7 2009 02 01 203136.07 -16.96 -179.15 504 PDE-O PDE-O 2009 02 02 144357.81 -21.79 -179.43 590 4.8 PDE-Q 2009 02 03 043837.38 -18.03 -178.21 597 4.4 PDE-Q 2009 02 05 035558.73 -16.64 -173.76 94 4.8 PDE-Q 2009 02 07 215156.44 -20.54 -178.21 543 5.2 PDE-Q 2009 02 08 094544.29 -16.38 -173.25 10 4.6 PDE-O 2009 02 10 041013.47 -22.65 -175.41 41 4.1 PDE-O 2009 02 11 093104.47 -20.78 -177.33 10 5.5 PDE-Q 2009 02 12 040545.64 -20.55 -177.64 473 PDE-Q 2009 02 15 011807.74 -16.62 -173.17 53 4.8 PDE-Q 2009 02 20 014618.16 -18.32 -178.76 515 5.6 2009 02 22 090050.02 -15.72 -178.39 438 PDE-O 4.6 02 23 194922.86 -18.75 -174.80 202 PDE-Q 2009 4.8 PDE-Q 2009 02 27 022924.99 -22.35 -175.44 35 4.9 PDE-Q 2009 02 28 071759.01 -20.16 -173.13 35 4.6

APPENDIX 9: Gravity Reduction Information

RV Langseth Gravity Tie Form

CruiseID PRE MGL0902 POST MGL0903 Date 20-21 Jan 09 Port Nuka 'alofa Operator Ted Koczynski Pier side Reading #1 (outbound) Ship's position (CNav) LAT 21d08.15155'South LONG 175d10.77727'West ALT 58.31 meters (SeaPath) Shipboard BGM reading 24850(raw counts) Height of Pier over Main Deck .60 meters Portable GPS Time TIME 21:35 start, 21:55 end Portable GPS Position LAT LONG ALT Non operating Reading1 2510.10 L&R Readings Reading2 2510.02 Reading3 2509.61 Reading4 2510.11 Reading5 2509.69 Reading6 2510.13 Reading7 2510.09 Ave. 2510.75 Discarding outliers Tie Point Tie Point Description (see relevant documentation/maps/pictures attached) Fua Amotu Airport Main Terminal on front walkway at road, Right terminal end= measurement 1, left end= measurement 2, Center= measurement 3 Portable GPS Time TIME 23:07 start, 23:45 end. Portable GPS Position LAT LONG ALT Non Operating. L&R Readings Measurement1 Measurement2 Measurement3 Reading1 2509.70 Reading2 2509.85 Reading1 2509.83 Reading2 2509.76 Reading1 2509.72 Reading2 2509.78 Reading3 2509.84 Reading3 2509.76 Reading3 2509.80 Reading4 2509.78 Reading5 2509.80 Note: So little change noted in readings that all readings will be averaged for the Tie Value. Average= 2509.785, Hi and Lo tossed out. Pier side L&R reading #2 (inbound) Shipboard BGM reading ~24750(raw counts) Height of Pier over Main Deck -.30 meters Portable GPS Time TIME 0126 21 Jan 2009 UTC Portable GPS Position LAT LONG ALT Non operational Reading1 2510.21 Reading2 2510.04 L&R Readings Reading3 2510.26 Reading4 2510.25 Reading5 2510.21 Average 2510.223, Hi and Lo tossed out. Notes: Info on Old airfield is lost, nobody remembers where the old buildings were. I made 3 measurements at the new terminal. I also checked with the Tongan Land Survey Department for any info on gravity ties. They had no knowledge of any gravity stations. Further checks with the Tongan Geological Survey were fruitless. Giving the topography here I would take the Airport values as extremely close to previous values. Comparing notes from the R/V Ewings Gravity Tie value dated 10/70, that was 978871.23, mGal, minus the Tie value that was dated July 1973 that has a value of

Tonga2Form.txt

Page 1

Tonga2Form.txt 978857.49 or a -13.71 mGal difference, indicating the 1970 value was Potsdam referenced.

 Height of pier over main deck should be entered in meters. Use a negative value to indicate pier is below main deck. Form v1.1 20080818 ;)

Page 2

\mathbf{N}	1
· ·	
	/
- V	
\sim	
/	١.

	GRAVITY BAS	SE STATION			
JDE		STATION DESI	GNATION		
21°14.0'S	(1)				
175°07.5'W	(1)	FUA	AMOTU		
TION		COUNTRY/ST	ATE		
32	METERS (1)	Tong	a Islands	TN	
REFERENCE CODE NUMBERS			ADOPTED GR	AVITY VALUE	
3 41415A		\$= 9	78 857.49		mgals
7023		1	/0 05/14/		
		ESTIMATE	D ACCURACY	DATE	
		± 1	mgals	July 1973	
PTION AND/OR SKETCH					
port, on ground at entran	ce to NAC h	ut.		(1) (2)	

REFERENCE SOURCE

(1) 02320 (2) 00916

tedski

From:	jns007@aol.com
Sent:	Tuesday, July 31, 2007 1:39 PM
To:	jrc@ldeo.columbia.edu; johnd@ldeo.columbia.edu; wsager@rv-revelle.ucsd.edu
Cc:	stennett@ldeo.columbia.edu; tedski@ldeo.columbia.edu
Subject:	Re: gravity processing

Hi Jim,

My memory is that, at one time, the filtering was done for 180 data points, (3 minutes), because the original Bellsupplied software used this interval. This left some noise in the data, so the system guys ran it through another filter, of the same type, but somewhat longer. I think this is the second step to which you refer. Later they realized that they could do the same thing with a single, longer, filter.

Regards, Joe

-----Original Message-----From: James R. Cochran <jre@ldeo.columbia.edu> To: jns007@aol.com; johnd@ldeo.columbia.edu; wsager@rv-revelle.ucsd.edu Cc: stennett@ldeo.columbia.edu; tedski@ldeo.columbia.edu Sent: Mon, 30 Jul 2007 1:27 pm Subject: Re: gravity processing

Hi Joe

1 thought there was a later step where we ran it through another filter to take out residual noise with amplitudes of 2-5 mGal and wavelengths of a few km. Am I misremembering?

Jim

At 1:02 PM -0400 7/30/07, ins007@aol.com wrote:

The original Bell software used Gaussian smoothing, and I believe that Lamont still uses this. A filter length of 200 to 600 data points is typical. Other weighted filters may be OK. I once, in ignorance, used division by increasing powers of two, and that seemed to work.

Regards, Joe

-----Original Message-----

3/5/2009

From: James R. Cochran <jrc@ldeo.columbia.edu> To: John Dicbold <johnd@ldeo.columbia.edu>; William Sager <<u>wsager@rv-revelle.ucsd.edu</u>> Cc: stennett@ldeo.columbia.edu; tedski@ldeo.columbia.edu Sent: Mon, 30 Jul 2007 10:36 am Subject: Re: gravity processing

Will

Raw gravimeter output is completely unusable - but I am sure the gravimeter software applies a three minute or five minute low pass filter to it. We found that there is still some several mGal short wavelength noise after that and now also apply an optimized low pass filter that Chris Small developed during a cruise we were on back in the 90s. I will CC a couple of our Science Officers in the Marine Office to see if they can help and maybe send you some software. If not, I will dig around, but I haven't done any hands-on processing at this level since I was trying to run a BGM3 in Alvin 6 or 7 years ago

Joe and Teddy - Can either of you help Will with this? Thanks

Jim

At 10:07 AM -0400 7/30/07, John Diebold wrote: >Will:

 \geq

>All i know is that we normally apply a long filter - Jim Cochran is >the resident >expert.

> >John

> 20111

22

(e)

>On Jul 30, 2007, at 4:04 AM, William Sager wrote:

>>Dear John,

>>

>>I am out on the Revelle where we have been collecting geophysical >>data and dredges from the Ninteyeast Ridge for the last month. One >>of the pieces of equipment is a Bell gravimeter. Scripps doesn't >>usually run a gravimeter and this one was borrowed from the Navy at >>my request. The trouble is that the Scripps techs don't really >>know what to do with the raw gravimeter data. I have never before >>gotten involved in the raw data processing myself. So I am writing >>to ask if you can give me a Lamont contact who knows about the >>steps of processing the output from one of these gravimeters. I >>figure LDEO has been collecting such data for years, so you guys >>would be the ones to ask. The raw gravimeter output looks very >>noisy, so there must be some filtering as well as Eotvos >>corrections to be made. If you can, please tell me who to write.

>> >>Thanks

>>Will

James R. Cochran Doherty Senior Research Scientist Lamont Doherty Farth Observatory Palisades, NY 10964

3/5/2009

LOCKHEED MARTIN PROPRIETARY INFORMATION

LOCKNEED MARTIN Lookbord Marin 2221 Nigara Falls Bird, Nigara Falls, NY 14304

DOC. NO.	6109-928094
ISSUE :	B
DATE :	5/00
PAGE :	5

DATA SHEET 1 BGM-3 SENSOR CALIBRATION USING AN ULTRADEX DIVIDING HEAD S/N 213 , P/N 6109-300503-1 CALIBRATED BY DESTUBBS DATE 3/30 /04 TIME 1300 TREND = MGAL/DAY 250 77 84 Output Pulses/400 Sync pulses at 0° (1)pulses 1347620 (2)Output Pulses/400 Sync pulses at 20° pulses 1347645 Output Pulses/400 Sync pulses at 340° (3) pulses (1) ÷ 100 = 250 77,84 (4) PPS (2) + 100 = 134 76,20 (5)PPS (3) + 100 = 13476.45 PPS (6) 13476,325 (7) PPS {[(4)-(7)]x10⁻⁶}/(1-cos(20°)) = 0.192373058 ppS/microg (8) 0.980375 /(8) = 5.0962178 (9) mgal/PPS Scale Factor (Spec: 4.0 to 6.0 mgal/PPS) $(4) \times (9) \times 10^{-3} = 127.802$ (10)gals 980.375 - (10) = 852.5729 (11)gals 2500288 (12)CALIB output pulses/400 sync pulses = pulses 2500000 (13)TEST output pulses/400 sync pulses = pulses [27,420] (14)CALIB equivalent = [(12) x (9)] + 100,000 = gals 127,405¥ (15)TEST equivalent = [(13) x (9)] + 100,000 = gals 852572.9 $(11) \times 1000 =$ (16)mgals Bias (Spec: (17) to (18)) 849594.6 $1000(977-25 \times (9)) =$ (17)mgals (lower limit) 855594.6 (18)1000(983-25 x (9)) = mgals (upper limit)

local gravity at Wheatfield (980.375 gals) + 1000. Value must be changed if Calibration is done elsewhere.

EXPORT CONTROLLED INFORMATION

Note: Use or disclosure of data on this page is subject to the restrictions set forth, when indicated on the title page of this document concerning authorization for export and/or proprietary information. Printed version of this document may not be current. The reader should verify issue date against the on-line system.

^{*}local gravity at Wheatfield (980.375 gals) + 1000. Value must be changed if Calibration is done elsewhere. ^{**}local gravity at Wheatfield (980.375 gals). Value must be changed if Calibration is done elsewhere.

EXPORT CONTROLLED INFORMATION

Note: Use or disclosure of data on this page is subject to the restrictions set forth, when indicated on the title page of this document concernin authorization for export and/or proprietary information.

APPENDIX 10: Towing Configurations

<u>6</u>
aunch
XBTI
0903
MGL

Matrix Americanity Dependention Barry State Matrix	Ng. LDEO, MK	GL 0903											
III. Start M Unitional Unit M Start M Unit M M	Ē	unch Time					Export Salinity	SURFACE SV	6m SV	Last Good Depth	Water Temp (C)	Sound Velocity	
1 272.4 200 0.0112 3 200 0.011 0.001 0.011 <th0.011< th=""> <th0.011< th=""> <th0.011< th=""></th0.011<></th0.011<></th0.011<>	-	5	Seq. #	Latitude	Longitude	Probe Type	Value (ppt)	m's	m/s	ε	at LGD	atLGD	
0 0		21:22:47	292	09 11.3736 N	104 07.03027 W	15	35.0	1539.31		290.9	10.91	1497.85	
0 01:230 3 03.63:05 176.04.100 7 201.15		06:38:50	N	20 28, 16077 S	176 02.21289 W	15	35.0	1541.07		18:30.5 m	2.52	1490.64	
0 002000 5 2001115 110 1020115 100 102010 238.m 196 155.00 1 0 002000 1 0 204.1007 2 203.0073 100 14.007 2 203.0073 100 14.007 2 203.0073 100 14.007 2 203.0073 100 14.007 2 203.0073 100 14.007 2 203.0073 100 14.007 2 203.0073 100 14.007 2 203.0073 100 14.007 2 200 100 14.0023 2 201.007 2 201.007 2 201.0073 2 201.0073 2 201.0		01:12:26	<i>с</i> о •	20 38.26782 S	176 10.17969 W	21	35.0	1541.28		2193.5	2.51	1596.88	
1 2.0000000 1 0.000000 1 0.00000 1 0.00000 1 0.00000		09:29:00	•	20 11.115	1/6 03.44 W	27	87	10.00		- 100		1000	
1 0.0000 7 0.0014/0000 10000 0.0014/0000	2 1	10,00,12		0 14/00/00 07	VI 21 020101 0/1	2 ;	0.00	1040,45		E 207	0.01	1020,02	
0.056000 7 2.030354 7.01 2.031 2.01		22:00:00	01	20 32,56132 5	1/0 14.42909 W	2;	8	1048-04		0.401	23.07	1031.67	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	02:46:00	-	20.30.02.05	1/012./18 W	2 ;	20.0	6'0bcL			Z-20	1497.06	
0 0005/00 0 0001/00 0 0001/00 0 0001/00 0 000000 0 000000 0 0000000 0 0000000 0 0000000 0 0000000 0 00000000 0 000000000 0 000000000000 0 000000000000000000000000000000000000	_	04:15:00		20 41.17419 S	176 07.88672 W	2	35.0	1541.87		2	5	~	
4 0.038/0 11 20.45.00% 175.93.06 154.100 154.130 154.140 154.140 154.140 154.140 154.140 154.140 154.140 154.140 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.141 154.1	~	03:57:00	σ	20 47.11035 S	176 13.10742 W	5	35.0	1542.55	1542.32	2170	2.49	1496.25	
6 06/36/46 11 206,5500% 176,0500%	*	00:38:00	9	20 41.20642 S	175 59.375 W	15	35.0	1541.09	1541,13	2190 m	3.22	1499.34	
6 060106 12 2 215,733 176 15872X 15 350 154,35 154,35 156,15 150,33 156,33 <th< td=""><td>92</td><td>05:25:46</td><td>÷</td><td>20 54,53979 S</td><td>176 9.33984 W</td><td>15</td><td>35.0</td><td>1541.95</td><td>1541,88</td><td>2181.8</td><td>2.55</td><td>1496.69</td><td></td></th<>	92	05:25:46	÷	20 54,53979 S	176 9.33984 W	15	35.0	1541.95	1541,88	2181.8	2.55	1496.69	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	06:01:06	p	21 5.2793 S	176 15,8872 W	12	35.0	1541.36	1541.99	1150.3	7.83	1500.79	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	06:49:48	6	20 59.24487 S	176 17,41602 W	52	35.0	1544.24	1541.33	2159.1	2.33	1495.39	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	05:14:23	14	20 26.6272 S	176 14.26758 W	12	35.0	1542.19	1543.2	2177.4	2.44	1496.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	05:42:29	9	21 03.1191 S	176 26.50586W	2	35.0	1542.74		2156.8	2.41	1495.64	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	03:29:00	16	20 49.6599 S	176 023.3125 W	51	35.0	1544.96	1542.5	2151.8	2.37	1495.38	
$ \begin{array}{[cccccccccccccccccccccccccccccccccccc$	-	06:20:00	17	8	82	15	35.0	BU	84	0 meters	BU	ua	
2 06:000 19 2007/701S 176:02701W 15 35.0 1543.74 1543.76 2156.7 244 1466.82 3 06:315.00 20 20.317.56 175.3.4290 W 15 35.0 1543.77 2156.7 2.43 1466.82 4 22:46.56 27 20.17.130S 176.53.4290 W 15 35.0 1544.49 154.3.77 2156.1 2.23 1466.73 8 06:205.0 24 154.4.9 154.4.9 154.4.19 154.4.19 154.6.17 2.23 1466.73 8 06:205.0 24 154.4.19 154.4.19 154.4.19 154.4.19 154.4.19 154.6.16 1466.87 15.40000 24 175.4.5.0559 W 15 35.0 154.2.13 2164.16 2.23 1466.73 15.40000 25 20.0.5.06813 176.4.0078 W 15 35.0 154.2.13 216.4.14 155.7 2.16.1 1466.73 15.4000 25 20.0.5.06813 176.4.0078		21:13:00	18	20 57.8728 S	176 03.4589 W	15	35.0	1543.68	1544,14	2178	2.41	1496.01	
3 06:15:00 20 2013:17:65 175:53:42965 175:53:42965 175:53:42965 146:74 4 22:45:66 22 2017:130 77:05:55:7 23:65 146:17 146:74 4 22:45:66 22 19:66:03008 176:0566411 15 35:0 154:43 154:37 23:67 24:73 146:78 8 0:62:050 24 20:17:105 23:60 154:43 154:37 23:67 23:6 146:65 8 0:62:050 24 20:61:170'/ 76:55 35:0 154:43 154:26 23:67 24:73 146:57 8 0:62:050 24 20:63:15 176:65:0500 24:66 146:56 21:66 23:7 146:56 5 14:40:02 26 20:03:16:170'/ 154:65 35:0 154:41 154:26 21:60 23:7 146:57 5 14:40:02 26 20:03:16:170'// 154:24:05 154:24:05 21:64 21:67 24:7 146:5	~	06:09:00	19	20 07.701 S	176 02.701 W	15	35.0	1543.74	1543,61	2159	2.44	1495.82	
4 06:37:45 21 2016,7465 176 0.56641W 1-5 35.0 154.351 154.351 154.351 154.351 154.351 154.351 154.351 154.351 154.351 154.351 154.351 154.351 2.2.87 1486.83 1486.73 </td <td>0</td> <td>05:15:00</td> <td>20</td> <td>20 13.81726 S</td> <td>175 53,42969 W</td> <td>2</td> <td>35.0</td> <td>1544.17</td> <td>1543.76</td> <td>2155.7</td> <td>2.43</td> <td>1495.74</td> <td></td>	0	05:15:00	20	20 13.81726 S	175 53,42969 W	2	35.0	1544.17	1543.76	2155.7	2.43	1495.74	
4 22:345.66 22 20:17,100 S 176 7.382.81 W 15 35.0 1544.29 1543.72 2150.6 2.37 1486.76 9 06:2000 25 20:731641 S 176 3.7031 SW 15 35.0 1544.79 1543.71 1446.73 1486.66 9 06:2000 25 20:731641 S 176 3.7031 SW 15 35.0 1542.61 1542.61 1543.73 1446.56 5 20:31641 S 176 5.7060 SW 15 35.0 1542.61 1542.61 2137 1465.56 5 20:07.31641 S 176 15.068 SW 176 5.706 SW 155.20 236.0 1542.61 2137 1465.56 5 20:07.31641 S 176 15.700 W 1.5 35.0 155.216 2157 238 1465.56 7 22:1203 20 26 55.07 1542.61 1542.15 2164.6 2.33 1465.73 7 22:1203 20.65087 S 176 15.700 SW 1.5 35.0 155.26 1542.17 2164.6	4	06:37:45	5	20 19.57495 S	176 0.56641 W	2	35.0	1543.51	1543.77	2179.6	2.36	1495.83	
B 04:26:56 23 19:66:033083 176:13.70312 W 1-5 35.0 1544.49 1544.81 2.184.1 2.33 1486.66 6 03:0000 2 2 06:1707 S 176:52.75608 W 1-5 35.0 1543.73 1544.61 2164.14 2184.1 2.33 1486.56 6 14:40:02 26 20:0.36813 S 176:15.79297 W 1-5 35.0 1542.61 1543.16 2184.1 2.427 1485.59 7 20:58:32 27 20:6.08813 S 176:15.79297 W 1-5 35.0 1542.61 1542.16 2184.1 2.47 1485.73 7 20:58:083 176:12.4707 W 1-5 35.0 1542.81 1542.13 2186.74 2186.74 2186.74 2186.74 2485.74 1485.74 7 20:58:083 S 176:12.4707 W 1-5 35.0 1542.83 1542.13 2007 24 1486.74 8 20:58:083 S 176:34.098 W 1-5 35.0 1542.81 <td< td=""><td>4</td><td>22:45,56</td><td>22</td><td>20 17.130 S</td><td>176 7.38281 W</td><td>15</td><td>35.0</td><td>1544.29</td><td>1543.72</td><td>2159.6</td><td>2.37</td><td>1496.75</td><td></td></td<>	4	22:45,56	22	20 17.130 S	176 7.38281 W	15	35.0	1544.29	1543.72	2159.6	2.37	1496.75	
9 06:00:00 24 2016:11707 S 176:25,70506 W 1-5 35.0 154:3.73 154:3.64 21397 m 2.427 1465 6 15:3000 25 20:07.31641 S 176:25,70506 W 1-5 35.0 154:3.73 154:4.64 21397 m 2.427 1465.59 5 20:56:02 25 20:07.31641 S 176:35,60509 W 1-5 35.0 154:261 S 2157 2.38 1465.59 7 20:56:02 27 20:60:0813 S 176:15.79297 W 1-5 35.0 154:261 S 2157 2.38 1465.74 7 20:56:02 S 28 20:12,000 S 176:12,470 W 1-5 35.0 154:264 S 154:27 2.38 1465.74 7 20:56:027 S 176:36:0969 W 1-5 35.0 154:247 S 154:27 2.38 1465.74 8 10:56:463 S 176:36:0969 W 1-5 35.0 154:248 S 154:27 2.38 1465.74 8 10:56:43 S 176:10.99698 W </td <td>8</td> <td>04:26:56</td> <td>23</td> <td>19 56.03308 S</td> <td>176 13.70312 W</td> <td>12</td> <td>35.0</td> <td>1544.49</td> <td>1544.91</td> <td>2184.1</td> <td>23</td> <td>1496.66</td> <td></td>	8	04:26:56	23	19 56.03308 S	176 13.70312 W	12	35.0	1544.49	1544.91	2184.1	23	1496.66	
4 15,3400 25 207,316415 175,45,02539 W 1-5 35.0 1542.46 1542.65 2160 2.38 1486.59 5 744002 26 202,3068135 17615,7927 W 1-5 35.0 1542.65 2160 2.38 1486.56 5 744002 26 202,3068135 17615,7927 W 1-5 35.0 1552.02 1542.61 246.4 2165.71 7 22:1203 29 202,3068135 17615,7927 W 1-5 35.0 1552.61 1542.61 246.6 1465.74 7 22:1203 29 202,306815 17615,7927 W 1-5 35.0 1552.81 1542.71 248.71 1465.71 7 22:1203 29 266.45 1542.83 1542.73 2164.6 2.33 1495.71 8 10.056.48 716 0.126.3097 W 7-5 35.0 1542.43 1542.73 2.44 1495.71 8 202.20.3007 S 1764.409 1542.15 1542.15	6	00:00:60	24	20 16.11707 S	176 25.70508 W	1-5	35.0	1543.73	1544.04	21397 m	2.427	1495	
5 203.008395 17616.06890 15 35.0 15.42.02 15.42.04 2157 2.39 1496.56 7 2036.023 27 2006.03813 17615.7927W 1.5 35.0 15.42.61 15.42.64 2157 2.39 1496.56 7 2036.023 17615.7927W 1.5 35.0 15.42.61 15.42.61 2165.74 2.39 1495.73 7 2036.0233 17612.7927W 1.5 35.0 15.42.61 15.42.73 2164.6 2.32 1495.71 8 10.056.48 31 1961.3037W 1.5 35.0 15.42.81 15.42.73 2.39 1495.71 8 10.056.48 31 1961.3037W 1.5 35.0 15.42.81 15.42.73 2.44 1495.73 8 10.056.48 31 16.42.13 35.0 15.42.14 15.42.73 2.43 1495.71 8 10.056.48 31 15.42.15 15.42.17 15.43.17 2.48 1495.71	- 	15:34:00	25	20 07.31641 S	175 45.02539 W	1-5	35.0	1542.46	1542.65	2160	2.38	1495.59	
5 20:58:32 27 20 66.08813 176 15,792.97 W 7-5 35.0 154.261 154.316 2165.74 2.4 1486.73 7 20:59:32 28 20 12.00243 176 15,792.97 W 7-5 35.0 154.261 154.316 2165.74 2.4 1486.73 7 20:59:323 776 34.09768 W 7-5 35.0 154.285 154.213 20.3 1486.73 8 10:56:40 31 20 12.00378 176 34.09768 W 7-5 35.0 154.247 154.213 20.3 1486.71 8 10:56:40 31 20 19.63.5683 176 34.09768 W 7-5 35.0 154.2.13 20.37 1486.71 8 10:56:40 31 20 22.22578 S 176 34.070 W 7-5 35.0 1542.13 20.37 2.4 1486.73 16 04:306 31 20 22.22578 S 176 34.07768 W 1-5 35.0 1542.13 20.37 2.4 1486.73 16 04:306 177 15.7	5	14:40:02	26	20 23.09839 S	176 18.05859 W	15	35.0	1542.02	1542.84	2157	2.39	1496.58	
7 20.50.23 28 20.12,200643 176 12,4707W 7.5 35.0 154.264 154.27 2184.6 2.32 1486.74 7 20.56.263 30 10.56.264 154.27 2184.6 2.32 1486.71 7 20.56.263 30 19.56.263 176 34.0766 W 7.5 35.0 1542.13 2164.6 2.32 1486.71 8 18.02.59 31 20.02.32578 S 176 34.0766 W 7.5 35.0 1542.47 1542.18 1491.26 2.48 1491.26 1 0.4.36.176 37 26.0 1542.19 1542.19 1542.55 1542.65 1496.71 1 37.26 37 20.29.3907 S 177 55.7246 W 1.7 35.0 1542.19 1542.55 1542.65 1496.72 1 37.26.007 S 37 27.4 1542.55 1542.65 90.19 4.54 1486.52 1 37.26.0166.55 177 15.7222.6W 1.7 35.0 1542.15 1542.16	10	20:59:32	27	20 06.08813 S	176 15.79297 W	75	35.0	1542.61	1543,16	2165.74	2.4	1495.73	
7 22:12:03 29 20:23,244:05 176 10.68680 1-5 35.0 154.285 154.23 216.46 2.39 1485.71 8 18:02:64 3 3 19:56:64 3 22:39 1485.71 8 18:02:64 3 3 19:52:368 1543.31 152.43 1485.71 8 18:02:64 3 20:02:39:087 176 63.406768 1-5 35.0 1543.13 1562.47 1485.27 8 18:02:64 3 20:02:39:0878 176 65.28:1621 W 1-7 35.0 154.3.13 1562.47 1485.28 10 04:30:12 3 2 14.31:166 177 15.792.42 W 1-7 35.0 154.3.15 154.2.57 2.4 1485.28 11 13:16:06 177 15.792.42 W 1-7 35.0 154.3.15 154.2.57 70.01 5.47 1485.28 11 13:16:06 177 15.792.42 W 1-7 35.0 154.2.57 70.01 5.47 1485.32 <t< td=""><td>5</td><td>20:59:32</td><td>28</td><td>20 12.20264 S</td><td>176 12.4707W</td><td>75</td><td>35.0</td><td>1542.64</td><td>1542.7</td><td>2184.6</td><td>2.32</td><td>1495.74</td><td></td></t<>	5	20:59:32	28	20 12.20264 S	176 12.4707W	75	35.0	1542.64	1542.7	2184.6	2.32	1495.74	
B 10.56.46 30 19.63.35633 176 34.06766 W 7.5 35.0 1542.38 1542.31 2037 2.4 1493.57 B 18.022.96 31 20.02.95578 176 34.06766 W 7.5 35.0 1542.31 2037 2.4 1493.57 B 18.022.96 31 20.02.95578 176 54.05 35.0 1542.31 1542.35 1542.35 1441.55 B 18.022.96 31 20.02.95578 177 16.96028 W 177 35.0 1543.19 1543.55 1642.55 1441.55 M 13.15.02 33 214.457 177 35.0 1543.55 1542.67 70.1 5.78 1465.28 M 13.15.07 34 214.57 35.0 1543.55 1542.01 700.1 5.78 1465.28 M 13.25.07 35 1543.65 1543.55 1542.01 700.1 5.78 1466.35 M 13.25.364.3 37 157.52.264.W 7.7 35.0	5	22:12:03	59	20 29.24426 S	176 10.95898 W	2	35.0	1542.85	1542.73	2164.6	2.39	1496.71	
B 18:02:59 31 20.02:32/578 176:48.27344 W 15 35.0 1542.47 1542.83 1852.4 2.58 1481.26 11 04:06:12 32 20.29:3607'S 176:48.27344 W 17 35.0 1543.19 1543.19 1543.55 1542.63 1481.26 1481.26 11 04:06:17 33 21:44.51616S 177.16.98828 W 1.77 35.0 1543.15 1542.05 900 4.64 1485.28 11 13:28.07 34 27.43.56 1542.65 1542.05 1562.21 1486.52 11 13:28.07 35.0 1543.56 1542.67 760.1 5.78 1486.52 11 13:28.07 35 1542.67 1542.67 1542.67 760.1 5.78 1486.52 11 13:28.07 1542.67 1542.67 1542.67 760.1 5.78 1486.52 11 11:32.60 37 1542.67 1542.67 1542.67 760.1 5.78 1486.13	8	10:56:48	8	19 68.35583 S	176 34.09766 W	15	35.0	1542.38	1543.31	2037	2.4	1493.57	
In 04:30:12 32 20:29:39007S 176 52:3007S 177 55:3007S 177 55:3007S 177 55:3007S 1640.55 177 55:3007S 1640.55 177 55:3007S 1640.55 16		18:02:59	31	20 02.92578 S	176 48.27344 W	15	35.0	1542.47	1542.93	1852.4	2.58	1491.26	
In 13:15:06 33 2143,51:96 17716,98828 W 1-7 35.0 1541.55 1542.05 901.9 4.91 1485.22 In 13:23:07 34 2144,136 17715,73242W 7-7 35.0 1541.55 1542.05 901.9 4.91 1485.22 In 13:23:07 34 2144,136 17715,73242W 7-7 35.0 1540.32 1542.67 760.1 5.78 1486.35 In 13:23:07 35 2154.179 1542.67 760.1 5.78 1486.35 In 13:23:64.3 36 29.66621W 7-7 35.0 1542.67 760.1 5.78 1486.35 In 13:23:64.3 37 176.56.7226W 7-7 35.0 1542.17 1542.67 750.1 5.78 1486.37 In 13:556.43 37 1542.67 1542.72 1542.67 750.1 5.78 1486.37 In 13:556.43 38 154.52.97 1542.67 1542.68	5	04:36:12	32	20 29.39087 S	176 52.81621 W	1-1	35.0	1543.19	1543.5	006	4.94	1485.28	
II 13:23:07 34 21 44,13916 S 177 15,73242 W T/7 35.0 1540.32 1542.01 760.1 5.78 1486.35 22 02:45:27 35 21 01 60.44 S 177 15,73242 W T/7 35.0 1542.01 760.1 5.78 1486.35 22 02:45:27 35 21 54.179 1542.67 760.1 5.78 1486.37 31 19:48:56 37 25.66.2178 W T/7 35.0 1542.07 1542.67 5.81 1486.37 33 29:28:68898 S 176 55.72266 W T-5 35.0 1542.07 1542.07 1542.67 5.81 1486.37 36 22:38:64:3 37 765.64 1544.23 860.5 4.86 1486.37 36 22:34:20 37 1542.07 1542.07 1542.33 860.5 4.86 1486.37 37 22:34:6489 W T-7 35.0 1542.07 1544.23 860.1 5.78 1486.58 38 22:34:79<	5	13:15:08	33	2143.51196 S	177 16.98828 W	1-1	35.0	1541.55	1542.05	901.9	4.91	1485.22	
Z 02:45:27 35 Z101:60:45 178:20:000 W T-7 35.0 154:59 154:57 780.1 5.47 1485:13 10 19:18:56 36 20:36:31655 176:56:80 W 1-7 35.0 154:179 154:179 154:18 757 5.47 1485:13 14 22:369:43 37 20:86:568:95 176:56:80 W 1-5 35.0 154:179 154:216 757 5.78 1486:37 14 22:369:43 37 20:86:568:95 176:36:72566 W 1-5 35.0 1542.07 1542.07 1542.07 1542.66 2181:3 2.322 1496:56 16 22:364:33 380:3 178:38:76568 W 1-7 35.0 1542.07 1542.07 1542.67 2.181:3 2.322 1496:56 16 22:364:33 178:38:76568 W 1-7 35.0 1542.07 1542.26 2.181:3 2.322 1496:56	5	13:23:07	34	21 44.13916 S	177 15.73242 W	1-7	35.0	1540.32	1542.01	760.1	5.78	1486.35	
(b) 19:18:56 36 20:36:565 S 176 66.66211 W 7.7 35.0 1541.79 1542.18 757 5.78 1486.37 M 23:568:43 37 20 26.66690 S 176 55.0 1541.79 1542.18 757 5.78 1486.37 M 23:568:43 37 20 26.66690 S 176 55.0 1542.66 2181.3 2.32 1486.68 M 23:568:43 37 20 1542.20 1544.23 890.5 4.86 1484.3 M 22:34:20 38 1544.23 890.5 4.86 1484.3	8	02:45:27	35	21 01.6044 S	178.20.000 W	1-7	35.0	1542.59	1542.57	760.1	5.47	1485.13	
M Z3:58:43 37 20<28:66696 8 176 55.72266 W T-5 35.0 1542.07 1542.6 2181.3 2.32 1496.68 6 22:34:20 38 19<44,52668 W	0	19:18:56	36	20 36.31665 S	176 56.66211 W	1-1	35.0	1541.79	1542.18	191	5.78	1486.37	
6 22:34:20 38 19 44.52633 178 38.75689 T-7 35.0 1543.29 1544.23 880.5 4.86 1484.3		23:59:43	37	20 26.65969 S	176 55.72266 W	15	35.0	1542.07	1542.6	2181.3	2.32	1496,68	
	9	22:34:20	38	19 44.52563 S	178 38.75586 W	1-1	35.0	1543.29	1544,23	860.5	4.86	1484.3	

APPENDIX 11: XBT Drops

Sheet2

APPENDIX 12: Clearances

J-17-2008	3 13:31	DES/OR/MLP			
. 🔿	· ·		United	States Department of State	
	je .		Bureau Environ	of Oceans and International mental and Scientific Affairs	
N.S.			2201 C S Washing P (202) 6	treet NW, Room 5805 on, D.C. 20520 47-0238 F (202) 647-1106	
		FACSIMILE TR	ANSMITT	AL SHEET	-
FO:	Jeff Rupert Lamont-Do (845) 359-6	herty Earth Observatory 817	RE:	R/V MARCUS G. LANGSETH 1/14/2009 - 3/3/2009 State File: 2008-083	-
FROM:	Liz Tirpak tirpakej@s	A Barres tate gov	DATÉ:	Monday, November 17, 2008 Total pages:	
We have	just receive	d the following approval(s) i	for the above	referenced research cruisc:	
Constal P	forta i	Distance at a Note		Annenal Dat	
Tonga	,	MFA Diplomatic Note No. F	-7/2/3	11/12/2008	•
Please no state(s):	tify the Chi	ef Scientist of the following	obligations t	o the clearance-granting coastal	
SUBMIT THE EN oceans/n forwarde	PCR FOR D DATE OI trvo66.html d to the Dep	A TO THE STATE DEPAR THE CRUISE: the form is On this form, the Chief Sci artment of State for distribu	TMENT NO available at l entist reports tion to the cl	LATER THAN 30 DAYS AFTER http://www.state.gov/www/global/oes/ when the cruise data will be earance-granting coastal states.	
SUBMIT appropria See Notic requirem	CRUISE D ate number of ces to Resea ents. All ma	ATA TO THE STATE DEP of copies and translations of rch Vessel Operators on the aterials can be mailed to my	ARTMENT: the data for e web to deter attention at t	the Chief Scientist must provide the ach clearance granting coastal state. mine country-specific reporting he address listed above.	
If the Ch indicated notify ou data, plea receive a which sc	ief Scientist in their PC r office with ase request a request for ientists you	cannot supply the data to the R Form (due to sampling error a formal letter of explanation extension in writing and in extension, I will contact you will need to encourage.	e Departmen or, cancelled on. If you ne ndicate your by fax at the	of State prior to the deadlines cruise, or other condition), you must ed an extension of time for submitting revised due date. Should I fail to end of each month to let you know	5
Do not h	esitate to co	ntact me if you have any que	stions or mo	difications to this clearance.	
	-				

MHOR U4

¥-7/\$/3

2

ć

The Ministry of Ereign Affairs of the Kingdom of Tonga presents its compliments to the Embassy of the United States of America and has the honour to refer to the Diplor attic Note. No. 27 dated 21st August 2008 requesting Clearance for the R/V MARCUS G LANGSETH to conduct marine scientific research within Tongan Waters.

The Ministry has further the bonour to inform the latter and submit herewith a copy of the approval from His Majesty's Cabinet Decision on 29^{th} October 2008 that have granted clearance for the R/V MARCUS G LANGSETH to conduct Marine Research in Toursen Waters during the period 14th January 2009 - 03^{th} March 2009:-

The Ministry of Coreign Affairs of the Kingdom of Tonga avails itself of this opportunity to rer. w to the Embassy of the United States of America the assurances of its highest consideration.

Embassy of the United States of America SUVA

12th November 2008

NOU-17-2808 13:31

1.915

MEMORANDUM

To: Hon, Cabinet Memillers Secretary for Finance and Planning Secretary for Fore; a Alfaits Secretary for Lands Survey & Naturel Resources and Environment Private Secretary (CHis Majesty

DES/DA/MLP

5.5

٦,

P. 11a

29P October 2008

Sonaly

With reference to Re.' Seeking Permission for Research Vessel (R/V) Marcus G

Langseth Vessel to conduct traine Scientific Survey under the National Jurisdiction of the Kingdom

of Tonga.

No.1140

(LSR 10/1 V2)

I have the honour to inform you that His Majesty's Cabinet Decision on 29th October 2008

was as follows:-

42

3

1.4.5

し水

Recommendations are approved, as amended, i.e.:

That the request from the National Science Foundation to conduct marine scientific research in Tongan waters by the Research Vessel Marcus G Langseth from 14st January 2009 – 03rd March 2009 be applieved.

That the result of the survey be submitted to the Ministry of Lands, Survey & Netural Resources and Environment in two stages as follows:

A preliminary report at the end of the research survey; Final report when data analysis and result is completed.

DAEIGN WILLST 0 3 NOV 2008 REGISTRY OFFIC's

TOTAL P.04

01-JAN-1900 21:41 FROM

то

3382998 P.01

MINISTRY FOR FOREIGN AFFAIRS, INTERNATIONAL CO-OPERATION AND CIVIL AVIATION

Phone: (879) 330 9645 Fax : (579) 330 1741 Levels 8 & 9 Severon House, Victoria Parade P.O. Box 2220 Government Building Sava, Fiji Islands

Web ette: http://www.foreignalfairs.gov.§ E-mail: farrignaffairs@govnet.gov.§

0 K 41 B

Note No. 838/08

The Ministry of Foreign Affairs, International Cooperation and Civil Aviation of the Government of The Republic of the Fiji Islands presents its compliments to the Embassy of the United States of America and has the honour to refer to the latter's Note No. 149 of 14th November, 2008 in regards to request diplomatic clearance of "Marcus G. Langseth", a United States flagged vessel owned by the United States National Science Foundation to conduct marine scientific research with the Fiji Exclusive Economic Zone (EEZ).

The Ministry of Foreign Affairs, International Cooperation and Civil Aviation has the honour to advice that diplomatic clearance has been granted to the aforementioned vessel to conduct marine scientific research with the Fiji Exclusive Economic Zone (EEZ) between 14th January to 28th February, 2009.

The Ministry of Foreign Affairs, International Cooperation and Civil Aviation of the Government of The Republic of the Fiji Islands avails itself of this opportunity to renew to the Embassy of the United States of America the assurances of its highest consideration.

Embassy of the Unit	ed States of America
Loftus Street	and the second se
Suva.	1 3 Contraction
	S REPUBLIC
17 December, 2008	OF THE
	ANS S
	Chargennes ??
	A CONTRACTOR

JAN-22-20	889	11:04	DES/DR/MLP			P
ί,	(Alto	1		United	States Department of State	,
			Bureau of Oceans and International Environmental and Scientific Affairs			
				2201 C Street NW, Room 5805 Washington, D.C. 20520 P (202) 647-0238 F (202) 647-1106		
	_		FACSIMILE TR	RANSMITT	AL SHEET	_
TO:		Jeff Ru Lamon (845) 3	pert t-Doherty Earth Observatory 59-6817	RE:	R/V MARCUS G. LANGSETH 1/11/2009 - 3/11/2009 State File: 2008-083	
FR	FROM: Liz Tirpak FROM: tirpakej@state.gov		DATE: Thursday, January 22, 2009 Total pages:			
We	have	just rec	eived the following approval(s) Diplomatic Note	for the above	-referenced research cruise: Approval Date	,
То	nga	:	MFA Diplomatic Note No. 2 MFA Diplomatic Note No. 2	22/09	01/17/2009	
Ple	ase no te(s):	otify the	Chief Scientist of the following	obligations t	o the clearance-granting coastal	

1.

SUBMIT PCR FORM TO THE STATE DEPARTMENT NO LATER THAN 30 DAYS AFTER THE END DATE OF THE CRUISE: the form is available at http://www.state.gov/www/global/oes/ oceans/ntrvo66.html. On this form, the Chief Scientist reports when the cruise data will be forwarded to the Department of State for distribution to the clearance-granting coastal states.

SUBMIT CRUISE DATA TO THE STATE DEPARTMENT: the Chief Scientist must provide the appropriate number of copies and translations of the data for each clearance granting coastal state. See Notices to Research Vessel Operators on the web to determine country-specific reporting requirements. All materials can be mailed to my attention at the address listed above.

If the Chief Scientist cannot supply the data to the Department of State prior to the deadlines indicated in their PCR Form (due to sampling error, cancelled cruise, or other condition), you must notify our office with a formal tetter of explanation. If you need an extension of time for submitting data, please request an extension in writing and indicate your revised due date. Should I fail to receive a request for extension, I will contact you by fax at the end of each month to let you know which scientists you will need to encourage.

Do not hesitate to contact me if you have any questions or modifications to this clearance.

MINISTRY FOR FOREIGN AFFAIRS. INTERNATIONAL CO-OPERATION AND CIVIL AVIATION

P.02

Phote: (874) 330 0546 Fax : (879) 330 1741 Levels II & 2 Suvavaa Rouse, Victoria Parade P.O. Box 2220 Coversion Dubling Bays, Fijf Islands Web alter http://www.localsnaffoirs.gov.0 8-mail: tacsignaffairs@sovesl.gav.5

Note No. 22/09

The Ministry of Foreign Affairs, International Cooperation and Civil Aviation of the Government of The Republic of the Fiji Islands presents its compliments to the Embassy of the United States of America and has the honour to refer to the latter's Note No. 3 of 9th January, 2009 in regards to request amendments of dates for diplomatic clearance of "Marcus G. Langseth", a United States flagged vessel owned by the United States National Science Foundation to conduct marine scientific research with the Fiji Exclusive Economic Zone (EEZ).

The Ministry of Foreign Affairs. International Cooperation and Civil Aviation has the honour to advice that diplomatic clearance has been granted to the aforementioned vessel to conduct marine scientific research with the Fiji Exclusive Economic Zone (EEZ) between 11th January to 11th March, 2009 and also to call at the port of Suva from 8th to 11th March, 2009.

The Ministry of Foreign Affairs, International Cooperation and Civil Aviation of the Government of The Republic of the Fiji Islands avails itself of this opportunity to renew to the Embassy of the United States of America the assurances of its highest consideration.

	<i>4</i> 11		. t	• •	· · .
Embassy	of the	United	States	of Ame	erica
Loftus S	treet	7 ;	64.	· · · · ·	
Suva.	· · · ·			10. HB 1	
17 Janua	ry, 20	09		1 244	i j
	· · ·		۰.	AL :	1
			1.1	$Z \supset I$	

TOTAL P.02