

# How Shallow Earth Structure Is Determined: A Classroom Exercise Demonstrating Seismic Refraction Use in the Real World Michael Hubenthal – <u>hubenth@iris.edu</u> John Taber – <u>taber@iris.edu</u>

Expanded from "Looking for what you can't see" (Neal, 1998)

<u>Time:</u> 90 Minutes <u>Grade Level:</u> 11<sup>th</sup> and 12<sup>th</sup> Grade physics students

5-E Phase:

This activity is intended as a Extend Phase activity to provide students with a real-world application for the concepts of waves. This should follow an Explore/Explain phases activity, such as the traditional light lab that explains concepts included in this lab such as reflection, refraction and transmission of energy.

Objective(s):

Explore how refracted seismic waves are used to determine earth structure. Reinforce the concepts of reflected and refraction of waves through a real world example.

### **Table of Contents**

| Section                                    | Page Number |
|--------------------------------------------|-------------|
| Materials List                             | 1           |
| Quick Summary                              | 2           |
| Teacher Instructions – Open                | 2           |
| Teacher Instructions – Prior Knowledge     | 3           |
| Teacher Instructions – Explore/Explain     | 3           |
| Teacher Instructions - Reflect             | 7           |
| Teacher Instructions - Apply               | 8           |
| Appendix A: Student worksheet and homework | 9           |
| Appendix B: Teacher Background Discussion  | 9           |
| Appendix C: Alignment with standards       | 14          |
| Appendix D: References & Acknowledgements  | 20          |

### Materials List

Download the associated powerpoint available on the web at <u>http://www.iris.edu/hq/resource/how\_shallow\_earth\_structure\_is\_determined</u> Copies of student worksheets and homework found in Appendix A

# Lesson Description: Quick Summary

| <u>OPERA</u>            | Activity                                                     | Time     |
|-------------------------|--------------------------------------------------------------|----------|
| <b>O</b> pen            | Intro discussion about what allows us to "see" or image      | 10       |
|                         | what is inside earth                                         |          |
| <b>P</b> rior Knowledge | Diagram reviewing reflection, refraction and ray-path angles | 10       |
|                         | in different materials                                       |          |
| Explore/Explain         | Students design the geometry for an experiment, analyze data | 45       |
|                         | from an experiment, and use visualizations of wave fronts to |          |
|                         | correlate the data and the real phenomena                    |          |
| <b>R</b> eflect         | Connect past concepts to new situation                       | 10       |
| Apply                   | Students analyze real data from New Zealand                  | 15 +     |
|                         |                                                              | Homework |

# Lesson Description: Teacher Instructions (w/ Potential Questioning Sequences)

## <u>O</u>pen – 10 Minutes

| O. Taxonomy   | Question                                | Answer                                       |
|---------------|-----------------------------------------|----------------------------------------------|
| Knowledge     | What is under our feet?                 | Accept all answers, but lead students to see |
|               |                                         | that they may have a general sense of what   |
|               |                                         | is under our feet but they the lack          |
|               |                                         | resolution to see very far.                  |
| Comprehension | What do we need to be able to see       | You are likely to get X-ray as a response.   |
|               | inside of something like the Earth?     |                                              |
| Knowledge     | Can an x-ray see through everything?    | Lead students to see that an x-ray won't     |
|               | What about lead or a really thick       | work because the materials that make up      |
|               | object?                                 | the Earth are too dense and thick            |
| Knowledge     | An x-ray was a great idea, so maybe     | Accept all answers but lead students to the  |
|               | something like it. What IS an x-ray?    | idea that an x-ray is a form of energy.      |
| Knowledge     | Maybe we could use another form of      | Accept all answers but lead students to      |
|               | energy. What form of energy could we    | seismic energy.                              |
|               | get to travel through the earth?        |                                              |
| Comprehension | Can we create a seismic wave?           | Accept all answers                           |
|               | Have a student(s) go to the back of the |                                              |
|               | room and put their ear to the ground on |                                              |
|               | a piece of paper, while you climb onto  |                                              |
|               | a chair in the front of the room and    |                                              |
|               | jump off. Ask the student(s) to         |                                              |
|               | describe to the rest of the class what  |                                              |
|               | they experienced.                       |                                              |
| Knowledge     | What did the person jumping off the     | Created the sudden pulse of energy or the    |
|               | chair do?                               | seismic wave. Thus they are the source.      |
| Knowledge     | What did the person listening to the    | Detected the seismic wave as it traveled to  |
|               | floor do?                               | them. Thus they are the sensor.              |
| Comprehension | Predict how your experience might       | Lead students to the idea that the "sensor"  |
|               | have differed if we were on a mat in    | would have experienced the same jump         |
|               | the gym or if they were on the wooden   | differently depending on what material       |

| gym floor, or if we were on a giant piece of metal. | they were on. This is the same principle<br>used to determine the shallow structure of<br>the Earth. Seismic waves can tell us<br>something about the material they are<br>traveling in. |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | traveling in.                                                                                                                                                                            |

#### <u>Prior Knowledge – 10 Minutes</u>

Distribute Student Handout #1 "What do you know?" Students should have  $\sim$ 5 minutes to complete the handout leaving 5 Minutes for reviewing answers. When discussing answers be sure to survey the class before accepting an answer to get an idea of how confident students are about these topics. If students are unsure of these basics, a quick review may be necessary before proceeding.

| P. Taxonomy    | Question                                  | Answer                                |
|----------------|-------------------------------------------|---------------------------------------|
| Knowledge      | 1. Which letter indicates the direct ray? | C or B                                |
| Knowledge      | 2. Which letter indicates the reflected   | B <sub>1</sub>                        |
|                | ray?                                      |                                       |
| Knowledge      | 3. Which letter indicates the refracted   | B <sub>2</sub>                        |
| -              | ray?                                      |                                       |
| Comprehension/ | 4. In which layer does the energy         | Layer 2 is the fastest. You know this |
| Analysis       | travel the fastest? How do you know       | because the $B_2$ bends away from the |
|                | this?                                     | normal. *NOTE BELOW                   |

\*Note – It is important to note that optical density (describes the speed of light in a transparent material) which students will be familiar with is not the same as mass density. The speed of seismic waves generally increase with depth as does the density ( $\rho$  = density) of Earth materials, therefore many people incorrectly assume that the velocity of seismic waves increases as density increases. However, as shown by the equation below the increase in the speed of seismic waves is a result of the rigidity ( $\mu$  = resistance to shearing) and incompressibility ( $\kappa$  = resistance to compression) of the material increasing with depth faster than density. For example the velocity of a primary wave ( $V_p$ ) is determined by  $V_p$  =  $((\kappa+4/3\mu)/\rho)^{1/2}$ . We can also use this to explain why secondary waves don't travel through liquids. The velocity of an s-wave ( $V_s$ ) is determined by  $V_s$ =( $\mu/\rho$ )<sup>1/2</sup>. Since liquids don't support shearing  $\mu$  is equal to zero thus  $V_s$  in a liquid must be equal to zero.

 $\underline{\mathbf{E}}$ xplore/Explain – 45 Minutes Handout Student Worksheet #2.

| E. Taxonomy   | Question                                                                                                                                                                    | Answer                                                                                                                                                                                                                  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge     | 1. Based on our previous discussion<br>and human simulation, what two<br>components will we need collect<br>information about what is below the<br>surface without digging? | We need a source and a sensor.                                                                                                                                                                                          |
| Comprehension | 2. Draw the components you listed<br>above on the diagram in a position or<br>geometry that would provide us with<br>enough information to help the school<br>district.     | Students will draw their source and sensors<br>in a variety of different arrangements. The<br>discussion should focus on the fact that the<br>source will send energy out in all<br>directions, however for each sensor |

|               |                                                                                                                                                                             | placement (assuming that there is a<br>bedrock layer down there) there are only<br>two paths from source to sensor, direct and<br>reflected/refracted. Therefore, we need<br>multiple sensors to find out about the entire<br>area.                                                        |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comprehension | Now that we have our experiment<br>designed, lets pretend we go ahead and<br>set off the explosion and the waves<br>travel to the sensors. What can we<br>actually measure? | Lead students to the idea that we can<br>measure the distance from the source to<br>each sensor, and that we can measure the<br>time it takes for the seismic waves to travel<br>from the source to each sensor. Thus, if we<br>have a distance and a time we can calculate<br>a velocity. |

A local geophysics consulting firm has conducted the survey we have just designed and the data is now in. Distribute Student Handout #3.

| E. Taxonomy                 | Question                                                                                                                                                                                                                                                           | Answer                                                                                                                                                                                                        |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge                   | This is seismic data, however as I am<br>sure you have already noticed, it is<br>nothing more than a graph. So what<br>information does this X-axis tell us?<br>The Y-axis?                                                                                        | The X-axis shows distance from source to geophone in meters. The Y-axis shows time in seconds.                                                                                                                |
| Comprehension               | If you follow down the line at 30<br>meters you notice that for part of the<br>way the line is nice and straight and<br>then once it gets to 0.032 seconds the<br>line begins to change or move back<br>and forth. What do you suppose that<br>this is telling us? | These are seismograms. Thus the point at<br>which the wiggling starts is the time at<br>which the seismic waves arrived at the<br>geophone or sensor.                                                         |
| Application                 | So we can tell what time the seismic<br>waves first arrive at each point! Since<br>we know where each sensor is located<br>and we know the time since the<br>explosion occurred, what can we<br>determine about the wave traveling to<br>each point?               | Since we know time and distance we can determine the velocity of the wave to each sensor.                                                                                                                     |
| Application                 | If we assume that the material the<br>wave is traveling through is made of<br>the same material, what would this<br>mean for the velocity of the wave<br>traveling though it?                                                                                      | If the material is the same then the velocity<br>of the wave should be constant.                                                                                                                              |
| Analysis Once you have esta | What would the shape of a constant velocity be on a graph of distance and time?                                                                                                                                                                                    | A constant velocity shown on a distance<br>versus time graph would be a straight line<br>where the slope would be a function of the<br>velocity. Given our graph the velocity is<br>the inverse of the slope. |

ask students to determine the velocity of the wave by drawing a line on their graph. \*Note: students will not be able to fit all points to one line. Thus many students will attempt to best fit a line to the points. The solution is that two lines or velocities must be used.

| Analysis | If two lines must be used what does   | If two lines must be used then it means that |
|----------|---------------------------------------|----------------------------------------------|
|          | that mean about the material that the | the wave must be traveling through two       |
|          | seismic wave is traveling in?         | different mediums each with a different      |
|          |                                       | velocity.                                    |

Why does the data look the way it does? To help you understand the data we have just looked at, lets look at a mathematical model of waves traveling in the earth. Show the series of gifs in the powerpoint. On the next two pages, several key images from the powerpoint have been annotated for you.

| E. Taxonomy | Question                                                                                                                           | Answer                                                                                                                                                                                                                                                                             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge   | What is a model?                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| Knowledge   | Show the first image of the power<br>point. Is this a photograph of the<br>inside of the earth? Does this model<br>actually exist? | No. It is a hypothetical description of a<br>complex entity or process. In this case it<br>shows wavefronts traveling through two<br>different mediums where the bottom<br>medium allows the seismic waves to travel<br>faster.<br>No. This is a model created in the<br>computer. |







You will probably need to step through the powerpoint many times to help students visualize this. Once students begin to grasp the concept, begin referring back to the data to help them transition between a graph and what the graph actually means "in the ground."

| E. Taxonomy | Question                             | Answer                                        |
|-------------|--------------------------------------|-----------------------------------------------|
| Application | Where is the headwave in our graph?  | The second velocity on the graph is the       |
|             |                                      | headwave arriving before the direct wave.     |
| Synthesis   | Now that you have seen the data and  | Accept all answers, but lead students to see  |
|             | the model, suppose that you got some | that you could alter the model until you got  |
|             | weird data back from somewhere in    | something that matched the strange data. It   |
|             | the field. Do you think the model    | is also important to point out to them that   |
|             | could be helpful?                    | just because the model matches the data       |
|             |                                      | does not necessarily mean that it is the only |
|             |                                      | correct interpretation.                       |

Once you feel students are comfortable with the concept introduce them to the equation they will need to help the school district find the depth of the bedrock. Students should then complete the rest of Student Handout #3. (The solutions are on page 5.)

### <u>**R**</u>eflect – 20 Minutes

| R. Taxonomy           | Question                                   | Answer                                       |
|-----------------------|--------------------------------------------|----------------------------------------------|
| Prior to this exercis | se we learned about waves using light, how | vever as you have seen today, all the same   |
| basic principles app  | bly to this new geophysics example. Distri | ribute Student Handout #4.                   |
| Application           | You will have 10 minutes to add the        | There is no single correct answer. Students  |
|                       | following terms to the diagram below.      | should be able to use correct logic to place |
|                       | There is no single correct placement       | each term on the diagram.                    |
|                       | for each term, so you must be able to      | Review students responses on the overhead    |
|                       | justify the placement of the term;         | as a class and allow students to determine   |
|                       | Angle of reflection, Angle of              | if they agree or disagree with each terms    |
|                       | refraction, Headwave, Direct wave,         | placement and the students justification.    |

| Huygen's principle, Normal, Critical |  |
|--------------------------------------|--|
| angle, Snell's Law                   |  |

Apply – Assign Homework See Appendix XXX

# <u>Appendix A: Student Worksheet(s)& Homework</u>

Student Handout #1

### WHAT DO YOU KNOW?

Directions: Based on your prior knowledge, please answer the following questions regarding the diagram.



- 2. Which letter indicates the reflected ray?
- 3. Which letter indicates the refracted ray?
- 4. In which layer does the energy travel the fastest? How do you know this?

Student Handout #2

Name:

<u>Direction(s)</u>: The school district is planning construction of a new elementary school. To plan the work necessary to begin construction, they have asked our physics class to help them find out what is underneath the playground, and how far it is from the surface to the bedrock.



1. Based on our previous discussion and human simulation, what two components will we need collect information about what is below the surface without digging?

2. Draw the components you listed above on the diagram in a position or geometry that would provide us with enough information to help the school district.

Student Handout #3

Name:\_\_\_\_\_

<u>Directions</u>: The survey we designed as a class has been carried out by a local geophysics consulting firm and the results are in. Below is a printout of the data. Time is the time since the explosion. Please study the data and answer the questions below.



Notes:

Equation:

### <u>Questions:</u> 1. Calculate the depth to the bedrock from the data above?

| Material | VP (m/s)    | Material  | VP (m/s)    |
|----------|-------------|-----------|-------------|
| Granite  | 5000 - 6000 | Marble    | 3700 - 7000 |
| Diorite  | 5780        | Sandstone | 1400 - 4300 |
| Gabbro   | 6450        | Limestone | 5900 - 6100 |
| Basalt   | 5400 - 6400 | Anhydrite | 4100        |
| Dunite   | 6800 - 8640 | Shale     | 2100 - 3400 |
| Gneiss   | 3500 - 7500 |           |             |

Table 2.1. P- -wave speeds for some rock material, from Dobrin (1976).

2. Using the table above and your calculations from the first page, what type of rock will the elementary school be built?

Student Handout #4 Name:

Directions: Add the following terms to the diagram below. There is no single correct placement for each term, so you must be able to justify the placement of the term;

Angle of reflection, Angle of refraction, Headwave, Direct wave, Huygen's principle, Normal, Critical angle, Snell's Law



#### HOMEWORK

#### Analysis of real data

Based on your success with the previous data set, the local geophysics team has decided to hire you as a summer intern. They have recently gotten back from the field in New Zealand where they collected this seismic record from a region called Wainuiomata. Write up a lab report that includes your interpretation of the data as a potential building site. (Note: You will want to do some internet research on what makes a good building site)

Geophone 1 (first vertical line on the left) was 100 m from the explosion and the geophones are 8 m apart, so the last geophone (number 24) was 184 m from the explosion. The vertical time scale is in milliseconds, starting from 0 (the time of the explosion) at the dark line at the top of the plot to 200 milliseconds at the bottom of the plot.



# Appendix B: Teacher Background Discussion

Energy travels through the Earth in seismic waves. As a seismic wave travels it causes the particles in the Earth to oscillate. These oscillations are related to the 'rock stiffness' or rigidity of the rock. Eventually seismic waves dissipate their energy to the earth and lose amplitude. Like other waves, seismic waves obey the laws of physics. For example, seismic waves have difficulty passing from one medium into another, hence they reflect (partially) from such a boundary. Waves also have different speeds in different media because each medium has its own rigidity. Different speeds give rise to refraction effects, including critical angle.



| Wave<br>path | Wave propagation in the upper medium                                           |    | What happens at the boundary                                             |
|--------------|--------------------------------------------------------------------------------|----|--------------------------------------------------------------------------|
| А            | Direct wave - along the surface                                                |    | (doesn't get to the boundary)                                            |
| В            | Super-critical wave - down & along at an angle greater than the critical angle | В' | The wave is totally reflected back up to the surface (at an equal angle) |
| С            | Critical wave - down & along at the critical angle                             | C' | refracted so much by the lower medium that it travels along the boundary |
|              |                                                                                | С" | and refracts back up towards the surface at the critical angle.          |

| D | sub-critical wave - down & along<br>at an angle less than the critical<br>angle | D'  | some of the energy is reflected back to the surface at an equal angle.                                       |
|---|---------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------|
|   |                                                                                 | D'' | while the rest of the waves energy is<br>transmitted into the lower medium but at a new,<br>refracted angle. |
| Е | Vertical wave - straight down perpendicular to the boundary                     | E'  | a small part of the waves energy is reflected straight back up                                               |
|   |                                                                                 | Е"  | while most is transmitted. The direction does not change but the speed does.                                 |

How do we use this to learn about what is under the ground?

We can calculate the seismic wave velocities in both layers and the depth to the boundary. We determine the 2 velocities using the time it takes for the seismic waves to travel to recorders on the surface. Usually, seismic waves travel slowly in the top layer and faster in the lower layer (the lower layer is more rigid). Going on to **Diagram 2**. below...

The direct wave (A) travels slowly toward the geophones (on the right).

The critical wave (C) starts by traveling slowly down and across the top layer at the critical angle. When it gets to the boundary it refracts and travels along the boundary at the faster speed of the lower layer. At points along the boundary it refracts up toward the surface, again, at the critical angle as a result of Huygen's Principle. Huygen's principle says that each point on a wave front is considered to be the source of a wavelet. The line tangent to all these wavelets defines a new position of a wavefront. For geophones nearer the left hand side of the diagram, the direct wave will arrive first. For geophones nearer the right hand side of the diagram, the refracted wave will arrive before the direct wave because it has traveled much of its path at the faster speed. The geophones are linked together and all start recording at the instant of the explosion.



**Diagram 2**: The refracted wave arrives at the distant geophones before the

Geophone records show the times that the first (& also later) seismic wave arrived at each geophone. The first seismic wave to arrive at the close geophones is the direct wave. However, more distant geophones record the refracted wave first. For the close geophones the time difference between consecutive geophone arrivals is related to the speed of the direct wave and, of course, the distance between the geophones.



However, the difference in arrival times for two consecutive distant geophones is related to the speed of the refracted wave as it was traveling along the boundary (at the faster speed). Can you explain why? (The actual arrival time is related to the whole wave path - going down, going across, going back up. Thus, the only difference in the path traveled for waves arriving at 2 adjacent stations is the section of the path along the lower boundary. The time difference in the arrival at the 2 stations is the time it takes the wave to travel the distance between the 2 stations, but along the lower boundary.)

#### Finding the velocities.

When viewing the geophone records in **Diagram 3** it is important to keep in mind that these are a series of seismograms situated next to one another. Positioned this way, the seismograms line up to create a simple distance versus time graph. While graph is conceptually simple, students often have difficulty interpreting graphs so the presence of seismograms may cause them difficulty at first. When working with students it is important to keep in mind that many students interpret distance/time graphs as the paths of actual journeys (Kerslake, 1981).



Diagram 3. Geophone records plotted with respect to distance.



**Diagram 4.** Connecting the 1<sup>st</sup> arrival times to find the velocity of the layers. We use the gradients of these 2 lines to calculate the velocities.

The velocity in the top layer (**Diagram 4**) is found by taking the inverse of the first (steeper) gradient, and the speed of the lower layer is found by taking the inverse of the second (shallower) gradient. Students often confuse the slope of a graph with the maximum or the minimum value and do not know that the slope of a graph is a measure of rate so extra care must be taken when exploring these concepts with students (McDermott et al., 1987; Clement, 1989).

Finally, we can calculate the depth, z, to the boundary using this formula ...  $z = 0.5 \sqrt{\frac{v_2 - v_1}{v_2 + v_1}} X_{cross}$ 

{where X<sub>cross</sub> is the distance from the source where the two gradient lines cross over.}

In this example ... The top layer velocity,  $v_{TL} = \frac{1}{0.001176} = 850 \text{ms}^{-1}$ the lower layer velocity  $v_L = \frac{1}{0.000658} = 1520 \text{ms}^{-1}$ and the depth to the boundary,  $z = 0.5 \sqrt{\frac{(1520 - 850)}{(1520 + 850)}} \times 67 = 18 \text{ m}$ 

# Appendix C: Alignment with Standards

Reinforces - By the end of 8<sup>th</sup> Grade

4.F. Motion

Vibrations in materials set up wavelike disturbances that spread away from the source. Sound and earthquake waves are examples. These and other waves move at different speeds in different materials.

### 4.C. Processes that Shape the Earth

Thousands of layers of sedimentary rock confirm the long history of the changing surface of the earth and the changing life forms whose remains are found in successive layers. The youngest layers are not always found on top, because of folding, breaking, and uplift of layers.

#### 9. B. Symbolic Relationships

Graphs can show a variety of possible relationships between two variables. As one variable increases uniformly, the other may do one of the following: increase or decrease steadily, increase or decrease faster and faster, get closer and closer to some limiting value, reach some intermediate maximum or minimum, alternately increase and decrease indefinitely, increase or decrease in steps, or do something different from any of these.

## Supports - By the end of 12<sup>th</sup> Grade

4.F. Motion

Waves can superpose on one another, bend around corners, reflect off surfaces, be absorbed by materials they enter, and change direction when entering a new material. All these effects vary with wavelength. The energy of waves (like any form of energy) can be changed into other forms of energy.

# Appendix D: References

American Association for the Advancement of Science. (1993) Benchmarks for Science Literacy. Accessed online 12/14/05 at http://www.project2061.org/tools/benchol/bolintro.htm

Bolt, Bruce, Earthquakes, (5th Edition), W.H. Freeman and Company, New York, 378pp., 2004.

Clement, J. (1989). The concept of variation and misconceptions in Cartesian graphing. *Focus on Learning Problems in Mathematics*, 11(1-2), 77-87.

Kerslake, D. (1981). Graphs. In K. M. Hart (Ed.), *Children's understanding of mathematics:* 11-16 (pp. 120-136). London: John Murray.

McDermott, L., Rosenquist, M., & van Zee, E. (1987). Student difficulties in connecting graphs and physics: Example from kinematics. *American Journal of Physics*, 55, 503-513.

Neal, R. (1998) Looking for what you can't see. Accessed online 12/14/05 at http://www.quaketrackers.org.nz/seismo\_refract.htm

Stein, S. and Wysession, M. An Introduction to Seismology, Earthquakes and Earth Structure, Blackwell Publishing, Malden, MA, 498pp., 2004.

Wilson, J., and Buffa, A., *Physics*, 3<sup>rd</sup> ed. 958pp. Prentice Hall, Upper Saddle River, NJ 1997.

Many thanks to Tom Boyd, Colorado School of Mines from whom the wavefront gifs originated.