
INCORPORATED RESEARCH INSTITUTIONS FOR SEISMOLOGY IN51B-1543

Wilber 3: A Python-Django Web Application For Acquiring Large-scale Event-oriented Seismic Data
Robert Newman (rnewman@iris.washington,edu), Adam Clark (adam@iris.washington.edu), Chad Trabant, Rich Karstens, Alex Hutko, Rob Casey, Tim Ahern

IRIS Data Management Center, Seattle, WA 98105

Postgres
TasksTasks

Task Worker
Task Worker

Web Server

Apache

Memcached

Web Page

Python

Coffeescript

Twitter Bootstrap

jQuery

jQuery UI

SlickGrid

Select2

Google Maps

dygraphs

Task Worker

Django

Python

Django

Celery

Req.

WSGI

Request

Response

Queue
data
req.

Monitor
data req.

status

Dequeue
data req.

Update
data req.

status

Local

CDN

Caching agent

1. Abstract

2. Schematic data flow from request

3. Features

4. Screenshots of UI Panels, Data Preview, Data Request & Download

5. Data Downloaded Statistics:
WILBERII vs. Wilber3 Comparison

Since 2001, the IRIS Data Management Center (DMC) WILBER II
system has provided a convenient web-based interface for lo-
cating seismic data related to a particular event, and requesting
a subset of that data for download. Since its launch, both the
scale of available data and the technology of web-based appli-
cations have developed significantly. Wilber 3 is a ground-up re-
design that leverages a number of public and open-source proj-
ects to provide an event-oriented data request interface with a
high level of interactivity and scalability for multiple data types.

Wilber 3 uses the IRIS/Federation of Digital Seismic Networks
(FDSN) web services for event data, metadata, and time-series
data. Combining a carefully optimized Google Map with the
highly scalable SlickGrid data API, the Wilber 3 client-side inter-
face can load tens of thousands of events or networks/stations
in a single request, and provide instantly responsive browsing,
sorting, and filtering of event and meta data in the web browser,
without further reliance on the data service.

The server-side of Wilber 3 is a Python-Django application, one
of over a dozen developed in the last year at IRIS, whose
common framework, components, and administrative overhead
represent a massive savings in developer resources. Requests
for assembled datasets, which may include thousands of data
channels and gigabytes of data, are queued and executed using
the Celery distributed Python task scheduler, giving Wilber 3 the
ability to operate in parallel across a large number of nodes.

The Web Interface to Lookup Big Events for Retrieval (WILBER) is a
web-based tool for previewing data before requesting direct data
download. Wilber3 is the replacement for WILBERII, a Perl CGI inter-
face written in 2000 to view pre-created maps, listings, and seismo-
gram plots for large events. WILBERII was phased out, and Wilber3
phased in, over 2013 as shown by the data shipment plots below. In
July 2013, over 0.5 TB of data were shipped by Wilber3.

Figure 1: Data shipped (as a percentage of all WILBER shipments)
comparison between WILBERII and Wilber3 from May 2013 (when
Wilber3 came online) and November 2013 (when WILBERII was de-
commissioned).

Figure 2: Gigabytes of data shipped comparison between WILBE-
RII and Wilber3 from May 2013 (when Wilber3 came online) and
November 2013 (when WILBERII was decommissioned).

6. Pros & Cons
Using open-source software has advantages and disadvantages.
In the context of this web-application, we have the following
bullet points for discussion:

PROS
1. Free
2. Works out of the box (most of the time)
3. Good support (most of the time)
4. Source-code transparency makes debugging & patching (pull
requests) relatively simple (no black boxes)

CONS
1. Packages do not necessarily play well with others: name-
space clashes, DOM-manipulation clashes, out-of-sync package
updates
2. High-flux changes: Not necessarily backwards compatible
3. You don’t always get exactly what you want = hacking

1. Real-time processing using AJAX & FDSN/IRIS webservices.
2. Processing methodology based on data request type (eg.
SEED vs. others).
3. Queue Prioritization: Celery is a distributed task queue man-
ager and is focused on real-time operation. Priority is configu-
rable. Currently based on request size (number of stations &
channels).
4. Use of Content Delivery Networks (CDN) for Javascript librar-
ies improves performance.
5. Use of Memcached (a memory object mapping system that
uses a key-value store) for optimzing dynamic delivery.
6. User preferences stored (preferred networks, user profile).

Select
Event

Events Stations

Data Preview

Vertical
Record

Sections
For

Selected
Stations

Per
Station
Record
Section

7. Potential future optimizations
- Static assets pipeline (icon sprites, minimized/combined JS &
CSS)
- Static assets via alternative webserver (eg. Nginx)
- Better plotting engine

8. Feature proposals
- Working with data and requesting data for multiple events
- Support restricted (pre publication) data
- Support federated FDSN data center services
- Modularize components for use in other packages/projects

9. References
Wilber3: http://www.iris.edu/wilber3
FDSN & IRIS Web Services: http://service.iris.edu
Django: https://www.djangoproject.com/
Celery Distributed Task Queue: http://www.celeryproject.org/
Memcached: http://memcached.org/

Build Data Request

Data types available:
- SAC binary (little endian)
- SAC binary (big endian)
- SAC ASCII
- SEED
- miniSEED
- ASCII: 1 col format
- ASCII: 2 col format
Smart queuing using Celery

Features:
- Dynamic plots for different instruments
- Predicted arrivals from IRISWS traveltime
- Record sections plots from IRISWS
 timeseries
- Plotting by dygraph Javascript library

Features:
- Predicted arrivals from
 IRISWS traveltime
- Record sections plots from
 IRISWS timeseries
- Plotting by dygraph Javascript
 library

96 requests | 55.2KB | 5.85 s (load 608ms, DOMContentLoaded: 424ms) 89 requests | 152KB | 17.89 s (load 468ms, DOMContentLoaded: 468ms)

4 requests | 15.8KB | 1.2 s

12 requests | 57.1KB | 3.34 s

