
= 2 step procedure

• Sampling or discretization — Taking discrete samples of a continuous 
data stream. The data may still be in analog representation after the 
sampling process.

Sampling and A/D conversion

• Analog to digital conversion (quantization and coding) — For voltage 
signals, this steps normally occurs in an electronic device which is called 
ADC, 'analog to digital converter'. 
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1/T = fdig, is called the sampling frequency or the digitization frequency. 

Fig. 5.1 Sketch of the discretization (sampling) process. The vertical arrows show the locations and the values of 
the samples. T denotes the sampling interval.

The sampling process

 T = sampling interval 
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Fig. 5.2  Input signal for the simulation of the discretization process. The signal frequency is 1 Hz.
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Fig. 5.3  Discretizing the data trace of Fig. 5.2 using a discretization frequency of 10 Hz. The vertical 
bars show the locations and the values of the function at the sampled times.
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Fig. 5.4 Original and reconstructed trace of Fig. 5.2 (after discretizing all of them with 10 Hz prior to reconstruction). 
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Fig. 5.6 Discretizing a sinusoidal signal with a signal frequency of 9 Hz and discretization 
frequency of 10 Hz. The vertical bars show the locations and the values of the function at the 
sampled times
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Fig. 5.5 Original and reconstructed sinusoidal signal with a signal frequency of 9 Hz (discretization frequency 10 Hz). 
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Exercise 1 
Sampling and A/D Conversion
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What is the general relationship between the discretization frequency, the 
signal frequency of a sinusoidal input signal (“input frequency”) and the 
dominant frequency of the reconstructed signal (“output frequency”)? Use 
DST to generate sinusoidal signals for an internal sampling frequency of 1024 
Hz, a window length of 2048 points, and signal frequencies from 1 - 20 Hz in 
steps of 1 Hz. Discretize and reconstruct each signal using a discretization 
frequency of 10 Hz and note the dominant frequency and the maximum 
amplitude of the reconstructed signal. You can determine the dominant frequency 
of a signal in Hz easily by measuring the dominant signal period on the DST 
screen in seconds and taking the reciprocal value. From the table of input 
frequencies, output frequencies and output amplitudes, try to infer the rule for 
calculating the output frequency for a given signal frequency and a given 
digitization frequency. Hint: The so called Nyquist frequency (half of the 
discretization frequency) is also referred to as the folding frequency. Think of the 
“frequency band” as a foldable band which is folded at multiples of the Nyquist 
frequency. Mark the corresponding pairs of (input frequency, alias frequency) on 
this band. It may help to actually cut out a paper band and folding it.

Problem 5.1
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What is the highest frequency which can be 
reconstructed correctly using a ‘discretization 
frequency’ of 10 Hz? 

Problem 5.2
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Problem 5.3 What would be the alias frequency for 
an input signal of 18.5 Hz and a discretization 
frequency of 10 Hz? 

Problem 5.3
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Sampling theorem

For a continuous time signal to be uniquely represented by 
samples taken at a sampling frequency of fdig, (every 1/fdig 
time interval), no energy must be present in the signal at 
and above the frequency fdig/2. fdig/2 is commonly called 
the Nyquist frequency (e.g. Mitra and Kaiser, 1993). Signal 
components with energy above the Nyquist frequency will 
be mapped by the sampling process onto the so called alias 
frequencies within the frequency band of 0 to Nyquist 
frequency. This effect is called the alias effect.
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%X k[ ] = 1
N

x nT[ ]e− j2π kn /N
n=0

N −1

∑

DFT is itself a finite length sequence. For a finite discrete-time 
sequence x[nT] of length N, the DFT can be defined as:

 
%x nT[ ] = %X k[ ]e j2π kn /N

k=0

N −1

∑

The set of sampled values can be recovered from the DFT by means of the 
inverse DFT, given by: 

The Discrete Fourier Transform (DFT)
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• The inverse DFT yields the periodic sequence         from which x[nT] 
can be obtained by considering only a single period. 

x~ nT[ ]

• Length of the sequence x[nT] == integer power of 2 => FFT (fast FT).

 
%X k[ ] = ckT

• Except for the scaling factor of 1/ T the DFT it is equivalent to the 
Fourier series representation of the infinite periodic sequence        - 
which is made up by periodic extension of the given finite sequence x
[nT]. 

x~ nT[ ]

Here           is the (infinite) periodic sequence constructed from x[nT] by 
periodic continuation. 

x~ nT[ ]

 The Discrete Fourier Transform (DFT)
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ωk k 2π
TN-------      for k⋅ 0 1 … … N 1–,–, ,= =

• The DFT is only defined for discrete radian frequencies wk, which are 
related to the total number of points N, and the sampling interval T by:

Notes

or in terms of frequencies fk

fk k 1
TN-------⋅ k

fdig
N--------      for k⋅ 0 1 … … N 1–,–, ,( )= = =

with fdig being the sampling frequency.

• In the context of the DFT always think in terms of           , the periodic 
extension of x[nT] and consider x[nT] as just one period of            

x~ nT[ ]

x~ nT[ ]

The Discrete Fourier Transform (DFT)
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• continous-time 
• infinite signals

• aperiodic
• continous spectrum

starting with:

The Discrete Fourier Transform (DFT)

• continous-time
• periodic signal

• aperiodic
• discrete spectrum

CTFS

• discrete-time
• infinite signal

• periodic
• infinite spectrum

DTFT

signal reconstruction with inverse DFT

• discrete-time
• periodic signal

• periodic
• discrete spectrum

Properties of certain signal types and corresponding spectra

CTFT

• discrete-time
• finite signal

• periodic
• discrete spectrum

DFT
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•For implementation, the DFT is most commonly defined for mere sequences of 
numbers and the notation x[n] is used instead of x[nT] (e.g. Strum and Kirk, 1988; 
Oppenheim and Schafer, 1989). 

Numerical implementation

 

%X k[ ] = x n[ ]e− j2π kn /N
n=0

N −1

∑

for the DFT and 

• Furthermore, the scaling factor 1/N is most commonly kept with the inverse 
transform. Therefore, a definition commonly found in software packages (e.g. IEEE 
Digital Signal Processing Committee, 1979) is:

 

%x n[ ] = 1
N

%X k[ ]e j2π kn /N
k=0

N −1

∑

for the inverse DFT. This directly leads to a common practical problem. 

 The Discrete Fourier Transform (DFT)
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Analog components of DAS: analog transfer function T(s).

Digital component: discrete transfer function T(z).

 The z-transform and the discrete transfer function

While T(s) was defined in terms of the Laplace transform, T(z) is 
defined in terms of its discrete counterpart, the z-transform. 
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Z x n[ ]{ } = x n[ ] ⋅ z−n = X(z)

n=−∞

∞

∑

The bilateral z-transform of a discrete sequence x[n] is defined as

The z-transform transforms the sequence x[n] into a function X(z) 
with z being a continuous complex variable. 

The z-transform and the discrete transfer function
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Digital LTI system
Analog LTI system

DecimationSampling

DAA filterAAA filterAmplifierSeismometer

FIR - Filter Effects
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Why bothering?

What is the reason for doing FIR filtering and 
decimating?

Nearly all seismic recorders use the oversampling technique to increase 
the resolution of recordings. In order to achieve an optimum valid 
frequency band, the filters are very steep.

Besides its advantages this also bears new problems.
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#               << IRIS SEED Reader, Release 4.4 >>
#
#               ======== CHANNEL RESPONSE DATA ========
B050F03     Station:     RJOB
B050F16     Network:     BW
B052F03     Location:    ??
B052F04     Channel:     EHZ
B052F22     Start date:  2007,199
B052F23     End date:    No Ending Time
#               =======================================
#               +               +--------------------------------------------+                +
#               +               |   Response (Poles & Zeros),  RJOB ch EHZ   |                +
#               +               +--------------------------------------------+                +
#
B053F03     Transfer function type:                A [Laplace Transform (Rad/sec)]
B053F04     Stage sequence number:                 1
B053F05     Response in units lookup:              M/S - Velocity in Meters per Second
B053F06     Response out units lookup:             V - Volts
B053F07     A0 normalization factor:               6.0077E+07
B053F08     Normalization frequency:               1
B053F09     Number of zeroes:                      2
B053F14     Number of poles:                       5
#               Complex zeroes:
#                 i  real          imag          real_error    imag_error
B053F10-13    0  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00
B053F10-13    1  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00
#               Complex poles:
#                 i  real          imag          real_error    imag_error
B053F15-18    0 -3.700400E-02  3.701600E-02  0.000000E+00  0.000000E+00
B053F15-18    1 -3.700400E-02 -3.701600E-02  0.000000E+00  0.000000E+00
B053F15-18    2 -2.513300E+02  0.000000E+00  0.000000E+00  0.000000E+00
B053F15-18    3 -1.310400E+02 -4.672900E+02  0.000000E+00  0.000000E+00
B053F15-18    4 -1.310400E+02  4.672900E+02  0.000000E+00  0.000000E+00

Seismometer
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#               +                     +--------------------------------+                      +
#               +                     |   FIR response,  RJOB ch EHZ   |                      +
#               +                     +--------------------------------+                      +
#
B061F03     Stage sequence number:                 3
B061F05     Symmetry type:                         A
B061F06     Response in units lookup:              COUNTS - Digital Counts
B061F07     Response out units lookup:             COUNTS - Digital Counts
B061F08     Number of numerators:                  96
#               Numerator coefficients:
#                 i, coefficient
B061F09       0  3.767143E-09
B061F09       1  5.277283E-07
B061F09       2  2.184651E-06
B061F09       3 -5.639535E-06
B061F09       4 -1.233773E-06
B061F09       5  9.386712E-06
B061F09       6  4.859924E-06
B061F09       7 -1.644319E-05
…
#
#               +                      +------------------------------+                       +
#               +                      |   Decimation,  RJOB ch EHZ   |                       +
#               +                      +------------------------------+                       +
#
B057F03     Stage sequence number:                 4
B057F04     Input sample rate:                     1.000000E+03
B057F05     Decimation factor:                     5
B057F06     Decimation offset:                     0
B057F07     Estimated delay (seconds):             1.490000E-01
B057F08     Correction applied (seconds):          0.000000E+00

DAA filter
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ak
k 0=

N
∑ y n k–[ ] blx n l–[ ]

l 0=

M
∑=

Linear Difference Equation

Infinite Impulse Response: ak ≠ 0
Finite Impulse Response: a0 = 1; ak≠0 = 0
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In SEED the impulse response of the decimation filters are given.

But how to construct FIR filters?

Easiest way: inverse DFT with selected spectral shape and phase

and truncate the (infinite) sequence to form a finite impulse

response
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Filter length vs. Steepnes
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Rectangular

Hanning

Hamming

Blackman
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Windowed FIR Filter Example:

1. Get ideal filter impulse response:

2. Get window function for truncation:

3. Apply window:
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a) b)
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a) b)
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Conclusions
        FIR filter generated precursory artefacts:

•  can become impossible to be identified visually

•  can have similar scaling properties as nucleation phases

        Zero - phase FIR filters in general

•  affect the determination of all onset properties (onset times, onset polar
ities)

For the interpretation of onset properties (onset times, onset po
larities, nucleation phases, etc.) the acausal response of the
zero-phase FIR filter has to be removed

but not 

for waveform analysis. 

Consequence
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