Sampling and A/D conversion

= 2 step procedure

e Sampling or discretization — Taking discrete samples of a continuous
data stream. The data may still be in analog representation after the
sampling process.

* Analog to digital conversion (quantization and coding) — For voltage
signals, this steps normally occurs in an electronic device which is called
ADC, 'analog to digital converter'.
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The sampling process

UT = f,;,. 1s called the sampling frequency or the digitization frequency.

T = sampling interval

A continuous signal

Q
E
= A
2

!

T

-
time

Fig. 5.1 Sketch of the discretization (sampling) process. The vertical arrows show the locations and the values of
the samples. T denotes the sampling interval.
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l) Discrete Signals

1.Discretization - Sampling
A continuous Signal Function:x () taken at specific time steps T_ results in:

x[n] = x,(nT;);

I =sampling interval; /. = = = sampling rate or sampling frequency

1
TI

A Note! The amplitude values are still x (1) € Rl
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Different mathematical notation using the 1-Impulse:

5(f) = 11f =0 :
0 sonst

and using a series of such “1-Impulses” describes the sampling:

[ e
EIEH} = E EJI:.T—HIE]

H=-m
This results in:

x[n] = x,(1)6 (1)
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The Sampling Theorem
In order to describe a continuous signal or function complete and unique using

amplitude values taken at discrete times T, the sampled signal MUST NOT

HAVE energy above a certain fre+c:|uen¢:j,,ff§:T = % This frequency is also called
5

Nyquist-Frequency.

The corresponding continuous signal x_(7) could be reconstructed using a linear

combination of the discrete function weighted by a function sinc(t) = %ﬂ:

oo

X, (1) = > I[ﬂ]ﬁiﬂc{ﬂf;(f—HTs})

= —o
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2.Sampling - Fourier Transform

Definition:

oo oo
J I ]- - I (2
X (jo)= { X, (1)e T dt = x (1) = > F X, (jo)e® dao;

—ao —0C

Strictly only valid if:

the function is absolute integrable: [|xﬁ,{r]|| dt<c <o

Latter point is not always the case in Geophysics!
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Important Properties of the Fourier Transform

Time domain Frequency domain
x(t) real X(jo) = [X(Gm)]*
x(t) imaginary X(-jo) = -[X(Go)]*
x(t) = x(-t) (x(t) even) X(-1m) =X(jo) (X(jo) even)
x(t) = - x(-t) (x(t) odd X(-jo) =-X(jo) (X(jo) odd)
x(t) real and even X(jo) real and even
x(t) real and odd X(jo) imaginary and odd
x(t) imaginary and even X(jo) imaginary and even
x(t) imaginary and odd X(jw) real and odd

* complex conjugate
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Time domain

Frequency domain

multiplication:

X (10, (1)

convolution: x_ (1) ® i (1)

dx(t)
dt

differentiation:
integration: {:rﬂ{rjl dt

X (t—a)

convolution:

1 : :
EX‘TUH}' H, (jo)

1 _ - .
= ?‘[XﬂUﬂ}HﬂUf-n —jQ) dQ

multiplication: X (jo )H (jo)

multiplication: jo - X(jo)

e |
multiplication: ;EX L)

X (jo)e??% fora=0

* complex conjugate
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Parsevals-Theorem:

oo oo
F |'T-:1r'[‘+:’|2 dt = i F |"rf.:;nU"I’]'|;'r do ;
- w

Back to sampling process:

(" \ I R 210
FT‘k 3 5[?—?!?5]; =T X ‘Jlkm_k?j
- o A 5k=—:l:l 5
using
gl
27 . . : in
o, = 2nf = T this results in A;(jo) = = 2 6(m — ko)
5 &
k=—o
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FT of a sampled signal can be represented by a convolution of FT{A;} and
FI{X(jo)}
: ] : :
X(jo) = T > X(o-ijo)

kF=—x

What the heck does that mean??7??

The sampled signal x[»] will be periodic in frequency o _ (sampling frequency). It

follows that the continuous signal x(r) can be reconstructed using only one

(0]
period. Only valid if the sampling theorem is not violated and no energy above —

2
is present in the signal x(1):

X (jo) = TX(jo);
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A A

~o,/2 /2 ®

A

A A AT

30 /2-0./2| 0 /2 3o /2 @

a) FT of analog signal
b) FT of discrete signal (sampling theorem complied)
c) FT of discrete signal (sampling theorem violated)
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The sampling theorem MUST be applied BEEFORE the sampling process. There-
fore an analog lowpass filter must be applied before sampling - regardless which
sampling frequency is used. The corner frequency (!) of that filter should satisfy:

f.=04-f.
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Consequence of violation - ALIASING:

mj 3 Cﬂ'j
[ 2
m.‘.‘f
0, ‘ 2
) Os
2

Problem 1:
Assume we are sampling with 125 Hz without an analog lowpass. Estimate the
alias frequencies of noise signals at 70 Hz, 120 Hz and 300 Hz!
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Fig. 5.2 Input signal for the simulation of the discretization process. The signal frequency is 1 Hz.

1
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Fig. 5.3 Discretizing the data trace of Fig. 5.2 using a discretization frequency of 10 Hz. The vertical
bars show the locations and the values of the function at the sampled times.
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Fig. 5.4 Original and
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trace of Fig. 5.2 (after discretizing all of them with 10 Hz prior to reconstruction).
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Fig. 5.6 Discretizing a sinusoidal signal with a signal frequency of 9 Hz and discretization
frequency of 10 Hz. The vertical bars show the locations and the values of the function at the
sampled times
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Fig. 5.5 Original and reconstructed sinusoidal signal with a signal frequency of 9 Hz (discretization frequency 10 Hz).
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3.A/D-Conversion

Decimal system:
I,
Y10y = S d{1010%;

i

Example:
102419, = 4-10°+2-101+0- 102+ 110’
LSB MSB

Binary system:

X(2) = ZJEEJZ
Example:
512(19) = 0-2%+ ...+ 028+ 127 represents “Little Endian”
LSB MSB 000000001
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A 16 bit A/D-converter could represent in principle 210 output states in its maxi-
mum (values between 0 -(27-1) are possible).

The LSB (least significant bit) or smallest step width of the A/D-converter (resolu-

tion) is defined by:

Maximale Voltage _
27 B

LSE =

0.

As the resolution is directly dependent on the number of bits, a n-bit A/D-converter
has "n-bit" resolution. Unfortunately, there is no rule, which would specify a “criti-

cal” number of "“must have” bits. It is simply like that: if we have more bits we will
decrease the noise added to the signal
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An equivalent important parameter of A/D conversion is the so called dynamic
range:

Amﬂ:u:"]

A

min

i
D = 20log;|

and therefore
D = 20log,y(2" - 1)~ nlogp(2) = n-6

Note: this definition intrinsically assumes proportionality to power (20*log) of the

signal - NOT energy (10"log)!

16 bit A/D-converter: 90dB:
24 bit A/D-converter: 138 dB:

Be aware of the sign!
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Exercise 1
Sampling and A/D Conversion
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Problem 5.1

What is the general relationship between the discretization frequency, the
signal frequency of a sinusoidal input signal (“input frequency”) and the
dominant frequency of the reconstructed signal (“output frequency”)? Use
DST to generate sinusoidal signals for an internal sampling frequency of 1024
Hz, a window length of 2048 points, and signal frequencies from 1 - 20 Hz in
steps of 1 Hz. Discretize and reconstruct each signal using a discretization
frequency of 10 Hz and note the dominant frequency and the maximum
amplitude of the reconstructed signal. You can determine the dominant frequency
of a signal in Hz easily by measuring the dominant signal period on the DST
screen 1n seconds and taking the reciprocal value. From the table of input
frequencies, output frequencies and output amplitudes, try to infer the rule for
calculating the output frequency for a given signal frequency and a given
digitization frequency. Hint: The so called Nyquist frequency (half of the
discretization frequency) is also referred to as the folding frequency. Think of the
“frequency band” as a foldable band which is folded at multiples of the Nyquist
frequency. Mark the corresponding pairs of (input frequency, alias frequency) on
this band. It may help to actually cut out a paper band and folding it.
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Problem 5.2

What 1s the highest frequency which can be
reconstructed correctly using a ‘discretization
frequency’ of 10 Hz?
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Problem 5.3

Problem 5.3 What would be the alias frequency for
an 1nput signal of 18.5 Hz and a discretization
frequency of 10 Hz?
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Sampling theorem

For a continuous time signal to be uniquely represented by
samples taken at a sampling frequency of f,., (every 1/f,,

time interval), no energy must be present in the signal at
and above the frequency f,; /2. f;,/2 1s commonly called

the Nyquist frequency (e.g. Mitra and Kaiser, 1993). Signal
components with energy above the Nyquist frequency will
be mapped by the sampling process onto the so called alias
frequencies within the frequency band of 0 to Nyquist
frequency. This effect is called the alias effect.
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The Discrete Fourier Transform (DFT)

DFT is itself a finite length sequence. For a finite discrete-time
sequence x[nT] of length N, the DFT can be defined as:

1 N-1

X[k] _ F E x[nT]e—jznkn/N

n=0

The set of sampled values can be recovered from the DFT by means of the
inverse DFT, given by:

N

f[n1]= 3 X[k]e

k=0

p—
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The Discrete Fourier Transform (DFT)

* The inverse DFT yields the periodic sequence AnT] from which x[nT)
can be obtained by considering only a single period.

» Length of the sequence x[nT] == integer power of 2 => FFT (fast FT).

» Except for the scaling factor of 1/ T the DFT it is equivalent to the
Fourier series representation of the infinite periodic sequence glnTl
which is made up by periodic extension of the given finite sequence x

[nT].

Here *nT! is the (infinite) periodic sequence constructed from x[nT] by
periodic continuation.
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The Discrete Fourier Transform (DFT)

Notes

* In the context of the DFT always think in terms of xlnT ], the periodic
extension of x[nT] and consider x[nT] as just one period of xlnTl

e The DFT is only defined for discrete radian frequencies w,, which are

related to the total number of points N, and the sampling interval T by:

W, = k-% fork = 0,1,...—...,N—1

or in terms of frequencies f,

f= k- TIN - k-é’]\;;g- fork = (0,1, ...—...N—1)

with f,;, being the sampling frequency.
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The Discrete Fourier Transform (DFT)

Properties of certain signal types and corresponding spectra

starting with:

e continous-time
e infinite signals

v

DTFT ,

xﬂﬂ ‘ ‘“Ix \/\/ e

i

-—

f

e discrete-time
e infinite signal

e periodic
e infinite spectrum

CTFS

V

T‘ t h DFT

Wl gt
o

e continous-time
e periodic signal

e aperiodic
e discrete spectrum

s “fflp ol
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e periodic
e discrete spectrum

e discréte-time °
e finite signal

signal reconstruction with inverse DFT

Lf‘hﬂf tiiml_LLH ’l\‘huuﬂp JhlLJ

o N ——d bo——N-—
e discrete-time
e periodic signal

e periodic
e discrete spectrum




The Discrete Fourier Transform (DFT)

Numerical implementation

eFor implementation, the DFT is most commonly defined for mere sequences of
numbers and the notation x[n] is used instead of x[nT] (e.g. Strum and Kirk, 1988;
Oppenheim and Schafer, 1989).

e Furthermore, the scaling factor 1/N is most commonly kept with the inverse
transform. Therefore, a definition commonly found in software packages (e.g. IEEE
Digital Signal Processing Committee, 1979) is:

N-1

):( ] = _ j2mkn/N
4= Sl
for the DFT and
):c[n]= lN_IX[k] j2skn/N
Nk=0

for the inverse DFT. This directly leads to a common practical problem.
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The z-transform and the discrete transfer function

Analog components of DAS: analog transfer function 7'(s).

Digital component: discrete transfer function 7'(z).

While T(s) was defined in terms of the Laplace transform, 7(z) is
defined in terms of its discrete counterpart, the z-transform.

Tuesday, September 1, 2009



The z-transform and the discrete transfer function

The bilateral z-transform of a discrete sequence x[n] is defined as

Z ()= 3 A[n) < =X

n=—o0

The z-transform transforms the sequence x[n] into a function X(z)
with z being a continuous complex variable.
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FIR - Filter Effects

Sampling

Decimation

Seismometer

A

/

Amplifier
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Why bothering?

What is the reason for doing FIR filtering and
decimating?

Nearly all seismic recorders use the oversampling technique to increase
the resolution of recordings. In order to achieve an optimum valid
frequency band, the filters are very steep.

Besides its advantages this also bears new problems.
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Seismometer

-l —
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#
#
#
BO50F03
BO50F16
B052F03
B052F04
B052F22
B052F23
#
#
#
#
#
B053F03
B053F04
BO53F05
B053F06
BO53F07
BO53F08
B053F09
BO053F14
#
#

<< IRIS SEED Reader, Release 4.4 >>

======== CHANNEL RESPONSE DATA ========
Station: RJOB
Network: BW

Location: ??

Channel: EHZ

Start date: 2007,199

End date: No Ending Time
+ + + +
+ | Response (Poles & Zeros), RJOB ch EHZ | +
+ + + +

Transfer function type: A [Laplace Transform (Rad/sec)]
Stage sequence number: 1
Response in units lookup: M/S - Velocity in Meters per Second

Response out units lookup: V - Volts
A0 normalization factor: 6.0077E+07
Normalization frequency: 1
Number of zeroes: 2
Number of poles: 5

Complex zeroes:
i real imag real_error imag_error

B053F10-13 0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

B053F10-13

#
#

1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Complex poles:

i real imag real_error imag_error

BO53F15-18 0-3.700400E-02 3.701600E-02 0.000000E+00 0.000000E+00
BO053F15-18 1-3.700400E-02 -3.701600E-02 0.000000E+00 0.000000E+00
BO53F15-18 2 -2.513300E+02 0.000000E+00 0.000000E+00 0.000000E+00
BO053F15-18 3 -1.310400E+02 -4.672900E+02 0.000000E+00 0.000000E+00
B053F15-18 4 -1.310400E+02 4.672900E+02 0.000000E+00 0.000000E+00



DAA filter

-
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H

B061F03
BO61F05
B061F06
B061F07
BO61F08
#

#

BO61F09
B061F09
B061F09
BO61F09
BO61F09
BO61F09
BO61F09
BO061F09

BT T

B057F03
B057F04
BO57F05
B057F06
BO57F07
B057F08

+ + +
+ | FIR response, RJOB ch EHZ |
+ + +
Stage sequence number: 3
Symmetry type: A

Response in units lookup:
Response out units lookup:
Number of numerators: 96
Numerator coefficients:

1, coefficient

0 3.767143E-09

1 5.277283E-07

2 2.184651E-06

3 -5.639535E-06

4 -1.233773E-06

5 9.386712E-06

6 4.859924E-06

7 -1.644319E-05

+ + +

+ | Decimation, RJOB ch EHZ |

+ + +
Stage sequence number: 4
Input sample rate: 1.000000E+03
Decimation factor: 5
Decimation offset: 0
Estimated delay (seconds): 1.490000E-01
Correction applied (seconds): 0.000000E+00

COUNTS - Digital Counts
COUNTS - Digital Counts



Linear Difference Equation

E aky[n_k] = E blx[n_l]

k:o l:O

Infinite Impulse Response: ax# 0
Finite Impulse Response: ap=1; akz =0
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* FIR filters :

+ Always stable.

- Steep filters need many coefficients.

+ Both causal and noncausal filters can be implemented.
+ Filters with given specifications are easy to implement!

 [IR filters :

- Potentially unstable and subject to quantization errors.

+ Steep filters can easily be implemented with a few coefficients. Speed.

- Filters with given specifications are in general, difficult, if not impossible,
to implement exactly(!).
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In SEED the impulse response of the decimation filters are given.

But how to construct FIR filters?

Easiest way: inverse DFT with selected spectral shape and phase
and truncate the (infinite) sequence to form a finite impulse

response
'y
N0,
—T —() ) U
C C
||:|2' :
e L = gt ] plterreetn
M ) 0 R ¥ M
i), 1 I

10

15
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Filter length vs. Steepnes

_— Glbbs ‘ears

Hy(e/®)

- /(11% overshoot)
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Blackm.an
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Windowed FIR Filter Example:

Get 1deal filter impulse response:

sin0.15w#n

w,=015r =hyn]= j—

Get window function for truncation:
N=25—M= 12 (N=2M+1)
— w[n] = 0.54 +0.46 cos [2«:%] ~12<12

Apply window:
- —91“0'15”"[0.54+ 0.46cos Qﬂ’*’] S12<12 0%
nn 25 ... o
20 g 0 0 i
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QDP 380 Stage 4
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Z.ero Phase FIR Filter

Problem: Two-Sided IR
Cure: Change IR into Minimum Phase

Methods:

1) Add phase of Minimum Phase Filter to trace spectrum

2) Recursive Filtering of time inverted trace
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Conclusions

FIR filter generated precursory artefacts:
* can become impossible to be identified visually
* can have similar scaling properties as nucleation phases
Zero - phase FIR filters in general
* affect the determination of all onset properties (onset times, onset polar

ities)

Consequence

For the interpretation of onset properties (onset times, onset po
larities, nucleation phases, etc.) the acausal response of the
zero-phase FIR filter has to be removed

but not

for waveform analysis.
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