The seismological software package SeisComP 3 and its role for tsunami early warning in southeast Asia

Joachim Saul, Winfried Hanka GeoForschungsZentrum Potsdam, Germany

> Jan Becker, Bernd Weber Gempa GmbH

saul@gfz-potsdam.de, weber@gempa.de

Managing Waveform Data and Metadata for Seismic Networks Giza, Egypt 8 - 17 November 2009

Overview

Introduction

The Dilemma of 2004 The Challenge

2 SeisComP

What is SeisComP? Architecture

Magnitudes

Magnitudes

4 SeisComP at BMKG Indonesia

Software Installation Bengkulu Earthquake

5 SeisComP at GFZ Potsdam

Upgrade to SeisComP Performance Statistics

6 Ongoing work/next steps

The dilemma of December 26, 2004

Sumatra-Andaman earthquake, $M_{\rm w}$ 9.3

Tsunami causes up to 350,000 victims (sources vary) in Indonesia, Thailand, Sri Lanka, India and even Somalia

00:58 UTC Earthquake off the coast of northern Sumatra

OT +12 min. GFZ Potsdam (Germany) reports EQ with m_b 6.9 OT +15 min. PTWC (USA) reports M_{WP} 8.0 OT +25 min. Tsunami hits Aceh, Indonesia OT +66 min. PTWC revises to 8.5 OT +79 min. NEIC (USA) reports M_S 8.5 OT +95 min. Tsunami hits Sri Lanka and Thailand OT +15 hrs. PTWC revises to 9.0 OT +3 months Stein and Okal report M_W 9.3

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra **OT** +12 min. GFZ Potsdam (Germany) reports EQ with $m_{\rm b}$ 6.9

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra **OT** +12 min. GFZ Potsdam (Germany) reports EQ with $m_{\rm b}$ 6.9 **OT** +15 min. PTWC (USA) reports M_{WP} 8.0

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra **OT** +12 min. GFZ Potsdam (Germany) reports EQ with $m_{\rm b}$ 6.9 **OT** +15 min. PTWC (USA) reports M_{WP} 8.0 OT +25 min. Tsunami hits Aceh, Indonesia

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra

- **OT** +12 min. GFZ Potsdam (Germany) reports EQ with m_b 6.9
- OT +15 min. PTWC (USA) reports M_{WP} 8.0
- OT +25 min. Tsunami hits Aceh, Indonesia
- OT +66 min. PTWC revises to 8.5
- **OT +79 min.** NEIC (USA) reports $M_S 8.5$
- OT +95 min. Tsunami hits Sri Lanka and Thailand
- OT +15 hrs. PTWC revises to 9.0
- OT +3 months Stein and Okal report M_W 9.3

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra

- **OT** +12 min. GFZ Potsdam (Germany) reports EQ with m_b 6.9
- OT +15 min. PTWC (USA) reports M_{WP} 8.0
- OT +25 min. Tsunami hits Aceh, Indonesia
- OT +66 min. PTWC revises to 8.5
- OT +79 min. NEIC (USA) reports M_S 8.5
- OT +95 min. Tsunami hits Sri Lanka and Thailand
- OT +15 hrs. PTWC revises to 9.0
- **OT** +3 months Stein and Okal report M_W 9.3

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra

- **OT** +12 min. GFZ Potsdam (Germany) reports EQ with m_b 6.9
- OT +15 min. PTWC (USA) reports M_{WP} 8.0
- OT +25 min. Tsunami hits Aceh, Indonesia
- OT +66 min. PTWC revises to 8.5
- OT +79 min. NEIC (USA) reports M_S 8.5
- OT +95 min. Tsunami hits Sri Lanka and Thailand
- OT +15 hrs. PTWC revises to 9.0
- **OT** +3 months Stein and Okal report M_W 9.3

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra

- **OT** +12 min. GFZ Potsdam (Germany) reports EQ with m_b 6.9
- OT +15 min. PTWC (USA) reports M_{WP} 8.0
- OT +25 min. Tsunami hits Aceh, Indonesia
- OT +66 min. PTWC revises to 8.5
- OT +79 min. NEIC (USA) reports M_S 8.5
- OT +95 min. Tsunami hits Sri Lanka and Thailand
- OT +15 hrs. PTWC revises to 9.0
- **OT** +3 months Stein and Okal report M_W 9.3

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra

- **OT** +12 min. GFZ Potsdam (Germany) reports EQ with m_b 6.9
- OT +15 min. PTWC (USA) reports M_{WP} 8.0
- OT +25 min. Tsunami hits Aceh, Indonesia
- OT +66 min. PTWC revises to 8.5
- OT +79 min. NEIC (USA) reports M_S 8.5
- OT +95 min. Tsunami hits Sri Lanka and Thailand
- OT +15 hrs. PTWC revises to 9.0
- OT +3 months Stein and Okal report M_W 9.3

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

00:58 UTC Earthquake off the coast of northern Sumatra

- **OT** +12 min. GFZ Potsdam (Germany) reports EQ with m_b 6.9
- OT +15 min. PTWC (USA) reports M_{WP} 8.0
- OT +25 min. Tsunami hits Aceh, Indonesia
- OT +66 min. PTWC revises to 8.5
- OT +79 min. NEIC (USA) reports M_S 8.5
- OT +95 min. Tsunami hits Sri Lanka and Thailand
- OT +15 hrs. PTWC revises to 9.0
- OT +3 months Stein and Okal report M_W 9.3

Grossly underestimated magnitude

resulted in a misjudgement of the risk of an ocean-wise tsunami

SC3@BMKG

C3@GFZ

Outlook

Lessons learned? Or not?

M_w7.7 Earthquake off Central Java 2006 Tsunami causes 700 victims

08:19 UTC Earthquake off the coast of central Java

Again

an accurate magnitude was not available early enough.

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast

Again

an accurate magnitude was not available early enough.

Java, July 17, 2006

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations

Again

an accurate magnitude was not available early enough.

Java, July 17, 2006

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake

Again

an accurate magnitude was not available early enough.

Java, July 17, 2006

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake **OT** +12 min. PTWC observatory message, M_W 7.3

Again

an accurate magnitude was not available early enough.

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake **OT** +12 min. PTWC observatory message, M_W 7.3 **OT** +17 min. PTWC bulletin #1, M_W 7.2 \rightarrow regional watch

Again

an accurate magnitude was not available early enough.

Java, July 17, 2006

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake **OT** +12 min. PTWC observatory message, M_W 7.3 **OT** +17 min. PTWC bulletin #1, M_W 7.2 \rightarrow regional watch OT + 21 min. 5-meter tsunami wave hits Pangandaran

Again

an accurate magnitude was not available early enough.

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake **OT** +12 min. PTWC observatory message, M_W 7.3 **OT** +17 min. PTWC bulletin #1, M_W 7.2 \rightarrow regional watch **OT** +21 min. 5-meter tsunami wave hits Pangandaran **OT** +22 min. NEIC M_W 7.2 from body-wave moment tensor

Again

an accurate magnitude was not available early enough.

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake **OT** +12 min. PTWC observatory message, M_W 7.3 **OT** +17 min. PTWC bulletin #1, M_W 7.2 \rightarrow regional watch OT + 21 min. 5-meter tsunami wave hits Pangandaran **OT** +22 min. NEIC M_W 7.2 from body-wave moment tensor **OT** +3 hrs. PTWC bulletin #2, still M_W 7.2

Again

an accurate magnitude was not available early enough.

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, M_1 6.8 based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake **OT** +12 min. PTWC observatory message, M_W 7.3 **OT** +17 min. PTWC bulletin #1, M_W 7.2 \rightarrow regional watch OT + 21 min. 5-meter tsunami wave hits Pangandaran **OT** +22 min. NEIC M_W 7.2 from body-wave moment tensor **OT** +3 hrs. PTWC bulletin #2, still M_W 7.2 **OT** +6 hrs. GCMT solution M_W 7.7

Again

an accurate magnitude was not available early enough.

08:19 UTC Earthquake off the coast of central Java OT + 2 min. BMG receives phone calls from coast **OT** +5 min. BMG SMS alert, $M_{\rm L}6.8$ based on 8 BB stations **OT** +6 min. BMG reports $m_{\rm b}5.5 \rightarrow$ non-typical earthquake **OT** +12 min. PTWC observatory message, M_W 7.3 **OT** +17 min. PTWC bulletin #1, M_W 7.2 \rightarrow regional watch OT + 21 min. 5-meter tsunami wave hits Pangandaran **OT** +22 min. NEIC M_W 7.2 from body-wave moment tensor **OT** +3 hrs. PTWC bulletin #2, still M_W 7.2 **OT** +6 hrs. GCMT solution M_W 7.7

Again

an accurate magnitude was not available early enough.

The Challenge - Tsunami Warning for Indonesia

- Earthquake sources very close to affected coasts
- Tsunami traveltimes 20...40 minutes

Short tsunami travel times

require tsunami warnings within pprox 5 minutes!

The Challenge - Tsunami Warning for Indonesia

- Earthquake sources very close to affected coasts
- Tsunami traveltimes 20...40 minutes

Short tsunami travel times

require tsunami warnings within pprox 5 minutes!

The **GITEWS** Project

German-Indonesian Tsunami Early Warning System

- Funded by the German Ministry of Science following the 2004 catastrophe
- Funding period 2005 2010
- Multidisciplinary
 - Seismology
 - GPS
 - Buoys with OBU (GPS, seismic, pressure)
 - Tide gauges
 - Modelling
 - Integrated warning center
- Tightly integrated within IOTWS
- www.gitews.de

The GITEWS Project

German-Indonesian Tsunami Early Warning System

- Funded by the German Ministry of Science following the 2004 catastrophe
- Funding period 2005 2010
- Multidisciplinary
 - Seismology
 - GPS
 - Buoys with OBU (GPS, seismic, pressure)
 - Tide gauges
 - Modelling
 - Integrated warning center
- Tightly integrated within IOTWS
- www.gitews.de

The GITEWS Project

German-Indonesian Tsunami Early Warning System

- Funded by the German Ministry of Science following the 2004 catastrophe
- Funding period 2005 2010
- Multidisciplinary
 - Seismology
 - GPS
 - Buoys with OBU (GPS, seismic, pressure)
 - Tide gauges
 - Modelling
 - Integrated warning center
- Tightly integrated within IOTWS
- www.gitews.de

The GITEWS Project

German-Indonesian Tsunami Early Warning System

- Funded by the German Ministry of Science following the 2004 catastrophe
- Funding period 2005 2010
- Multidisciplinary
 - Seismology
 - GPS
 - Buoys with OBU (GPS, seismic, pressure)
 - Tide gauges
 - Modelling
 - Integrated warning center
- Tightly integrated within IOTWS
- www.gitews.de

The GITEWS Project

German-Indonesian Tsunami Early Warning System

- Funded by the German Ministry of Science following the 2004 catastrophe
- Funding period 2005 2010
- Multidisciplinary
 - Seismology
 - GPS
 - Buoys with OBU (GPS, seismic, pressure)
 - Tide gauges
 - Modelling
 - Integrated warning center
- Tightly integrated within IOTWS
- www.gitews.de

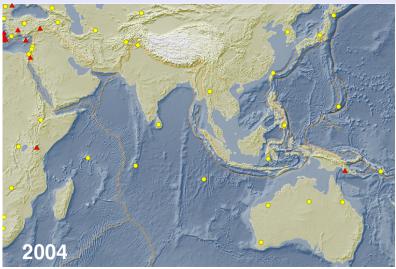
The GITEWS Project

German-Indonesian Tsunami Early Warning System

- Funded by the German Ministry of Science following the 2004 catastrophe
- Funding period 2005 2010
- Multidisciplinary
 - Seismology
 - GPS
 - Buoys with OBU (GPS, seismic, pressure)
 - Tide gauges
 - Modelling
 - Integrated warning center
- Tightly integrated within IOTWSwww.gitews.de

GFZ Helmholtz Centre Pot SPAM

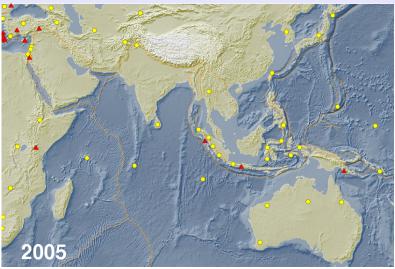
The GITEWS Project


German-Indonesian Tsunami Early Warning System

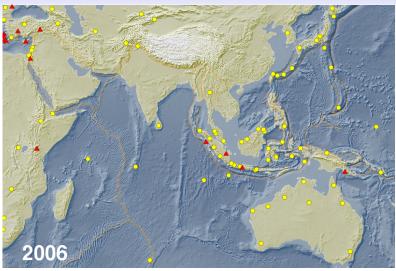
- Funded by the German Ministry of Science following the 2004 catastrophe
- Funding period 2005 2010
- Multidisciplinary
 - Seismology
 - GPS
 - Buoys with OBU (GPS, seismic, pressure)
 - Tide gauges
 - Modelling
 - Integrated warning center
- Tightly integrated within IOTWS
- www.gitews.de

GFZ Heinholtz Centre

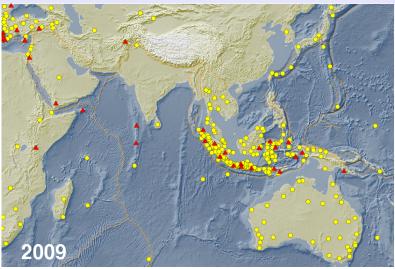
Outlook


The IOTWS Seismic Network

Outlook

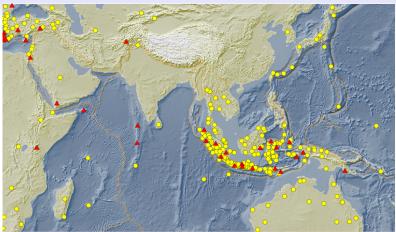

The IOTWS Seismic Network

(Introduction)


The IOTWS Seismic Network

(Introduction)

The IOTWS Seismic Network



Introduction

C3@GFZ

Outlook

The IOTWS Seismic Network

Now 143 broadband stations operational in Indonesia Plan is to have 160 stations by 2010!

- **Robust data transmission**
 - SeedLink was already available
- **Flexible data integration**
 - Using SeedLink plugins (LISS, NAQS, etc., new: CD 1.1)

Automatic processing

Must be reliable enough not to require interaction (normally)

Need for fast, non-saturating magnitudes

Adoption of mB to regional distances, integration of Mwp, ...

Manual interaction

Must still be possible at any time

ixisting 3rd-party software found to be inadequate

 \rightarrow Start of SeisComP 3 development within GITEWS

Robust data transmission

SeedLink was already available

Flexible data integration

Using SeedLink plugins (LISS, NAQS, etc., new: CD 1.1)

Automatic processing

Must be reliable enough not to require interaction (normally) Need for fast, non-saturating magnitudes

Adoption of mB to regional distances, integration of Mwp, ...

Manual interaction

Must still be possible at any time

xisting 3rd-party software found to be inadequate

 \rightarrow Start of SeisComP 3 development within GITEWS

- **Robust data transmission**
 - SeedLink was already available
- Flexible data integration
 - Using SeedLink plugins (LISS, NAQS, etc., new: CD 1.1)

Automatic processing

Must be reliable enough not to require interaction (normally) **Need for fast, non-saturating magnitudes** Adoption of mB to regional distances, integration of Mwp, ...

Manual interaction

Must still be possible at any time

Existing 3rd-party software found to be inadequate

Robust data transmission

SeedLink was already available

Flexible data integration

Using SeedLink plugins (LISS, NAQS, etc., new: CD 1.1)

Automatic processing

Must be reliable enough not to require interaction (normally)

Need for fast, non-saturating magnitudes

Adoption of mB to regional distances, integration of Mwp, ...

Manual interaction

Must still be possible at any time

Existing 3rd-party software found to be inadequate

 \rightarrow Start of SeisComP 3 development within GITEWS

Robust data transmission

SeedLink was already available

Flexible data integration

Using SeedLink plugins (LISS, NAQS, etc., new: CD 1.1)

Automatic processing

Must be reliable enough not to require interaction (normally)

Need for fast, non-saturating magnitudes

Adoption of mB to regional distances, integration of Mwp, ...

Manual interaction

Must still be possible at any time

Existing 3rd-party software found to be inadequate → Start of SeisComP 3 development within GITEWS

Robust data transmission

SeedLink was already available

Flexible data integration

Using SeedLink plugins (LISS, NAQS, etc., new: CD 1.1)

Automatic processing

Must be reliable enough not to require interaction (normally)

Need for fast, non-saturating magnitudes

Adoption of mB to regional distances, integration of Mwp, ...

Manual interaction

Must still be possible at any time

Existing 3rd-party software found to be inadequate → Start of SeisComP 3 development within GITEWS

- **Robust data transmission**
 - SeedLink was already available
- Flexible data integration
 - Using SeedLink plugins (LISS, NAQS, etc., new: CD 1.1)

Automatic processing

Must be reliable enough not to require interaction (normally)

Need for fast, non-saturating magnitudes

Adoption of mB to regional distances, integration of Mwp, ...

Manual interaction

Must still be possible at any time

Existing 3rd-party software found to be inadequate

 \rightarrow Start of SeisComP 3 development within GITEWS

- Software package for seismological data acquisition, quality control and analysis in real time
- Data archiving modules
- GUIs for quick manual interaction, event visualization and state-of-health monitoring
- Emphasis on simplicity and speed. SeisComP must allow timely tsunami warnings!

GFZ Heinholtz Centre Potspam

- Software package for seismological data acquisition, quality control and analysis in real time
- Data archiving modules
- GUIs for quick manual interaction, event visualization and state-of-health monitoring
- Emphasis on simplicity and speed. SeisComP must allow timely tsunami warnings!

GFZ Heinholtz Centre Potspam

- Software package for seismological data acquisition, quality control and analysis in real time
- Data archiving modules
- GUIs for quick manual interaction, event visualization and state-of-health monitoring
- Emphasis on simplicity and speed. SeisComP must allow timely tsunami warnings!

GFZ Helmholtz Cestre Potspam

- Software package for seismological data acquisition, quality control and analysis in real time
- Data archiving modules
- GUIs for quick manual interaction, event visualization and state-of-health monitoring
- Emphasis on simplicity and speed. SeisComP must allow timely tsunami warnings!

GFZ Heinholtz Centre Potspam

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

- Originally designed as acquisition and archiving software for the GEOFON data center at GFZ Potsdam (Germany)
- SeedLink as core protocol and software has become a de-facto standard in Europe since 2001 and is adopted world-wide
- Since 2003 (after the Algeria earthquake) development of simple automatic analysis tools
- Since 2005 (version 2) with multi-channel picker, global associator/locator, since 2006 prototype version of mB magnitude no integrated interactive analysis
- ArcLink for distributed archives (waveforms and meta data)
- Mid of 2006 start of SeisComP 3 core (communication, database)
- SeisComP 3 GUI development starting in end of 2006
- In May 2007 deployment of first SeisComP 3 prototype

Distributed processing

- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

- Distributed processing
- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

- Distributed processing
- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

- Distributed processing
- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

- Distributed processing
- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

- Distributed processing
- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

- Distributed processing
- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

- Distributed processing
- Data acquisition using SeedLink
- QuakeML data model used for storage and communication
- Automatic P picker (STA/LTA)
- Automatic global phase associator/locator
- Magnitudes implemented: ML, MJ, mb, mB, Mw(mB), Mwp planned: mBc, Ms(20), Ms(BB)
- GUIs for simple data quality and state-of-health monitoring and event visualization
- GUIs for quick manual interaction where necessary

• Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)

- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

- Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)
- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

- Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)
- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

- Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)
- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

- Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)
- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

- Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)
- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

Design and Architecture

- Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)
- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

Design and Architecture

- Use of de-facto standards for data and parameter exchange (QuakeML, SeedLink, ArcLink)
- Written in C++ with most functionality available as library functions
- Inter-process communication between modules using TCP-based messaging to allow distributed processing
- Communications managed by central mediator
- Database support as module (currently MySQL, SQLite, PostgreSQL; Oracle planned)
- Remote processing/review
- Scripting interface for the Python language

(SeisComP)

Magnitudes

SC3@BMKG

SC3@GFZ

Outlook

Architecture

- Meta data object model
- Provides both XML serialization and database schema
- Extensible
- Intended for international data exchange
- Developed by ETH Zürich and GFZ Potsdam
- Contributions from NEIC, EMSC, IRIS
- Homepage: www.QuakeML.org
- SeisComP supports QuakeML

Introduction

QuakeML

```
<?xml version="1.0"?>
<seiscomp>
 <EventParameters>
    <event publicID="ev071023233207#2" created="2007-10-23T23:35:59.687787Z">
      <preferredOriginID>or071023233207#23</preferredOriginID>
      <preferredMagnitudeID>or071023233207#23#netMag.Mw(mB)</preferredMagnitudeID>
      <description>Java, Indonesia</description>
    </event>
    <origin publicID="or071023233207#0" created="2007-10-23T23:35:46.580568Z">
      <time>
       <value>2007-10-23T23:21:39.497741Z</value>
       <lowerUncertainty>2.934</lowerUncertainty>
       <upperUncertainty>2.934</upperUncertainty>
      </time>
      <latitude>
       <value>49.328</value>
       <lowerUncertaintv>13.742</lowerUncertaintv>
        <upperUncertainty>13.742</upperUncertainty>
      </latitude>
      <longitude>
        <value>-157.161</value>
       <lowerUncertainty>9.491</lowerUncertainty>
       <upperUncertainty>9.491</upperUncertainty>
      </longitude>
```


SeedLink is the data acquisition protocol in SeisComP. It features:

Uses MiniSeed format

the real-time version of SEED, which is **the** standard format for seiscmic data exchance. Data are converted to MiniSeed (and thus **homogenized**) as early as possible

Plugins for most digitizers

EarthData, Q330, Guralp, Nanometrics, ...

 \Rightarrow reduce dependency on hardware (and manufacturer!)

Plugins for other protocols

LISS, NAQS, Scream, ...

Robustness

automatic re-connect, priority on data completeness

Flexibility

SeedLink can be used over dialup lines, through SSH tunnels, internet connections, VSat, ...

SeedLink is the data acquisition protocol in SeisComP. It features:

Uses MiniSeed format

the real-time version of SEED, which is **the** standard format for seiscmic data exchance. Data are converted to MiniSeed

(and thus **homogenized**) as early as possible

Plugins for most digitizers

EarthData, Q330, Guralp, Nanometrics, ...

 \Rightarrow reduce dependency on hardware (and manufacturer!)

Plugins for other protocols

LISS, NAQS, Scream, ...

Robustness

automatic re-connect, priority on data completeness

Flexibility

SeedLink can be used over dialup lines, through SSH tunnels, internet connections, VSat, ...

SeedLink is the data acquisition protocol in SeisComP. It features:

Uses MiniSeed format

the real-time version of SEED, which is **the** standard format for seiscmic data exchance. Data are converted to MiniSeed (and thus **homogenized**) as early as possible

Plugins for most digitizers

EarthData, Q330, Guralp, Nanometrics, ...

 \Rightarrow reduce dependency on hardware (and manufacturer!)

Plugins for other protocols

LISS, NAQS, Scream, ...

Robustness

automatic re-connect, priority on data completeness

Flexibility

SeedLink can be used over dialup lines, through SSH tunnels, internet connections, VSat, ...

SeedLink is the data acquisition protocol in SeisComP. It features:

Uses MiniSeed format

the real-time version of SEED, which is **the** standard format for seiscmic data exchance. Data are converted to MiniSeed (and thus **homogenized**) as early as possible

Plugins for most digitizers

EarthData, Q330, Guralp, Nanometrics, ...

 \Rightarrow reduce dependency on hardware (and manufacturer!)

Plugins for other protocols

LISS, NAQS, Scream, ...

Robustness

automatic re-connect, priority on data completeness

Flexibility

SeedLink can be used over dialup lines, through SSH tunnels, internet connections, VSat, ...

SeedLink is the data acquisition protocol in SeisComP. It features:

Uses MiniSeed format

the real-time version of SEED, which is **the** standard format for seiscmic data exchance. Data are converted to MiniSeed (and thus **homogenized**) as early as possible

Plugins for most digitizers

EarthData, Q330, Guralp, Nanometrics, ...

 \Rightarrow reduce dependency on hardware (and manufacturer!)

Plugins for other protocols

LISS, NAQS, Scream, ...

Robustness

automatic re-connect, priority on data completeness

Flexibility

SeedLink can be used over dialup lines, through SSH tunnels, internet connections, VSat, ...

SeedLink is the data acquisition protocol in SeisComP. It features:

Uses MiniSeed format

the real-time version of SEED, which is **the** standard format for seiscmic data exchance. Data are converted to MiniSeed (and thus **homogenized**) as early as possible

Plugins for most digitizers

EarthData, Q330, Guralp, Nanometrics, ...

 \Rightarrow reduce dependency on hardware (and manufacturer!)

Plugins for other protocols

LISS, NAQS, Scream, ...

Robustness

automatic re-connect, priority on data completeness

Flexibility

SeedLink can be used over dialup lines, through SSH tunnels, internet connections, VSat, ...

SeedLink is the data acquisition protocol in SeisComP. It features:

Uses MiniSeed format

the real-time version of SEED, which is **the** standard format for seiscmic data exchance. Data are converted to MiniSeed (and thus **homogenized**) as early as possible

Plugins for most digitizers

EarthData, Q330, Guralp, Nanometrics, ...

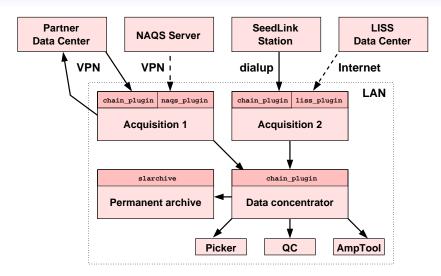
 \Rightarrow reduce dependency on hardware (and manufacturer!)

Plugins for other protocols

LISS, NAQS, Scream, ...

Robustness

automatic re-connect, priority on data completeness


Flexibility

SeedLink can be used over dialup lines, through SSH tunnels, internet connections, VSat, \ldots

Introduction

SeedLink Acquisition

Digitizer plugins

- Quanterra Q380/Q680, Q4120 and Q730
- Quanterra Q330 (UDP/IP)
- EarthData PS2400 and PS624
- Lennartz M24, PCM5800 and MARS88
- Guralp DM-24
- Kinemetrics K2
- Geotech DR24
- Nanometrics HRD24

Import/Export plugins

In addition to plugins that talk directly to a digitizer, plugins for exporting data from the following data acquisition systems are available:

- IRIS/GSN Live Internet Seismic Server (LISS)
- IRIS/IDA Near Real Time System (NRTS)
- Earthworm
- CTBTO's CD1.1
- Kinemetrics Antelope
- Nanometrics NAQS
- Guralp's SCREAM
- RefTek's RTPD

Earthworm, Antelope and NAQS can also have SeedLink clients, importing data from SeedLink (e.g. slink2ew for Earthworm).

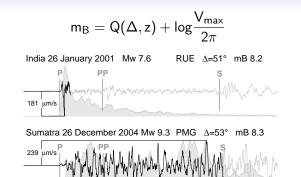
- Originally only mb and ML (SeisComP 1/2)
- For tsunami warning, quick magnitude quantification for $M\approx 8$ and larger is needed
- SeisComP 3 uses (broadband!) mB as default magnitude for large earthquakes
- Other fast magnitudes available (Mwp) or planned (Mwpd, mBc, Mm, Mjma, ...)
- Empirical conversion formulas for mB and Mwp to Mw → Mw(mB) and Mw(Mwp)
- Slower magnitudes like Ms currently not high priority, but will be implemented as well
- ML in SeisComP 3 (obviously) not calibrated by default; but possible using a plugin

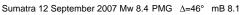
- Originally only mb and ML (SeisComP 1/2)
- For tsunami warning, quick magnitude quantification for $M\approx 8$ and larger is needed
- SeisComP 3 uses (broadband!) mB as default magnitude for large earthquakes
- Other fast magnitudes available (Mwp) or planned (Mwpd, mBc, Mm, Mjma, ...)
- Empirical conversion formulas for mB and Mwp to Mw → Mw(mB) and Mw(Mwp)
- Slower magnitudes like Ms currently not high priority, but will be implemented as well
- ML in SeisComP 3 (obviously) not calibrated by default; but possible using a plugin

- Originally only mb and ML (SeisComP 1/2)
- For tsunami warning, quick magnitude quantification for $M\approx 8$ and larger is needed
- SeisComP 3 uses (broadband!) mB as default magnitude for large earthquakes
- Other fast magnitudes available (Mwp) or planned (Mwpd, mBc, Mm, Mjma, ...)
- Empirical conversion formulas for mB and Mwp to Mw \rightarrow Mw(mB) and Mw(Mwp)
- Slower magnitudes like Ms currently not high priority, but will be implemented as well
- ML in SeisComP 3 (obviously) not calibrated by default; but possible using a plugin

- Originally only mb and ML (SeisComP 1/2)
- For tsunami warning, quick magnitude quantification for $M\approx 8$ and larger is needed
- SeisComP 3 uses (broadband!) mB as default magnitude for large earthquakes
- Other fast magnitudes available (Mwp) or planned (Mwpd, mBc, Mm, Mjma, ...)
- Empirical conversion formulas for mB and Mwp to Mw → Mw(mB) and Mw(Mwp)
- Slower magnitudes like Ms currently not high priority, but will be implemented as well
- ML in SeisComP 3 (obviously) not calibrated by default; but possible using a plugin

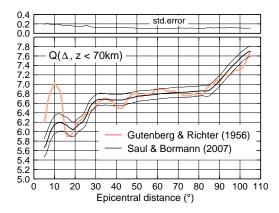
- Originally only mb and ML (SeisComP 1/2)
- For tsunami warning, quick magnitude quantification for $M\approx 8$ and larger is needed
- SeisComP 3 uses (broadband!) mB as default magnitude for large earthquakes
- Other fast magnitudes available (Mwp) or planned (Mwpd, mBc, Mm, Mjma, ...)
- Empirical conversion formulas for mB and Mwp to Mw → Mw(mB) and Mw(Mwp)
- Slower magnitudes like Ms currently not high priority, but will be implemented as well
- ML in SeisComP 3 (obviously) not calibrated by default; but possible using a plugin


- Originally only mb and ML (SeisComP 1/2)
- For tsunami warning, quick magnitude quantification for $M\approx 8$ and larger is needed
- SeisComP 3 uses (broadband!) mB as default magnitude for large earthquakes
- Other fast magnitudes available (Mwp) or planned (Mwpd, mBc, Mm, Mjma, ...)
- Empirical conversion formulas for mB and Mwp to Mw \rightarrow Mw(mB) and Mw(Mwp)
- Slower magnitudes like Ms currently not high priority, but will be implemented as well
- ML in SeisComP 3 (obviously) not calibrated by default; but possible using a plugin




- Originally only mb and ML (SeisComP 1/2)
- For tsunami warning, quick magnitude quantification for $M\approx 8$ and larger is needed
- SeisComP 3 uses (broadband!) mB as default magnitude for large earthquakes
- Other fast magnitudes available (Mwp) or planned (Mwpd, mBc, Mm, Mjma, ...)
- Empirical conversion formulas for mB and Mwp to Mw \rightarrow Mw(mB) and Mw(Mwp)
- Slower magnitudes like Ms currently not high priority, but will be implemented as well
- ML in SeisComP 3 (obviously) not calibrated by default; but possible using a plugin

The body-wave magnitude mB



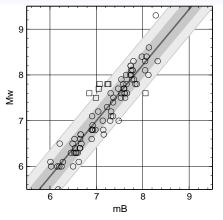
The body-wave magnitude mB

New m_B calibration function (Saul & Bormann, 2007)

GFZ Heinholtz Centre Potspam

Introduction

(Magnitudes)

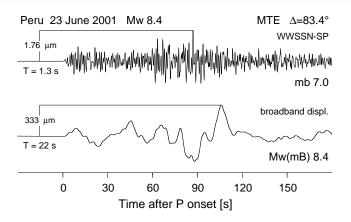

SC3@BMKG

SC3@GF

Outlook

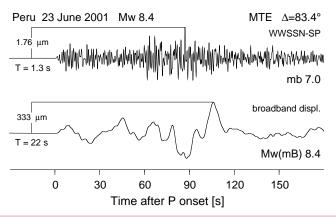
Estimating Mw from mB

Transformation mB -> Mw



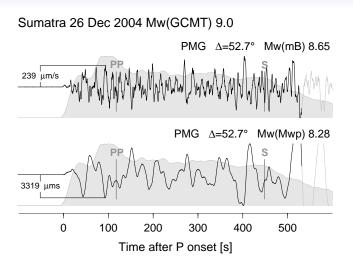
$M_W(m_B) = 1.33 \, m_B - 2.36$

(Bormann & Saul, 2008)



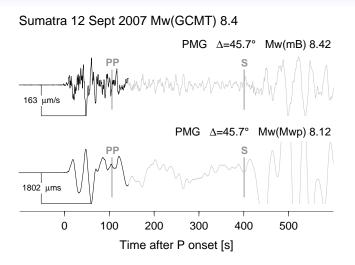
Saturation of m_b

Saturation of m_b

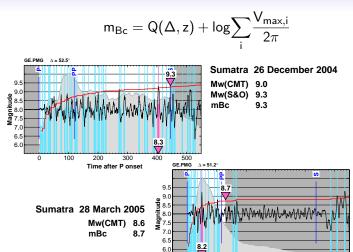


The saturation effect

may result in a magnitude underestimation of more than 3 units!



Example for Mwp and mB



Example for Mw and mB

mBc - The new XXL magnitude

Saul & Bormann (2007)

The seismological software package SeisComP 3, and its role for tsunami early warning in southeast Asia

100

200

300

Time after P onset

400

500

0

Software Installation at BMKG Indonesia

Provisional installation of SeisComP 2 at BMKG in July 2005 by GFZ

Installation of SeisComP 3

at BMKG in May 2007 by three GFZ experts

Software training

following the software installation

Software upgrade

in September 2007

Advanced software training

following the September upgrade, with special emphasis on magnitudes for large events

September 12 Bengkulu earthquake

immediately after the September training

Software Installation at BMKG Indonesia

Provisional installation of SeisComP 2 at BMKG in July 2005 by GFZ Installation of SeisComP 3 at BMKG in May 2007 by three GFZ experts

Software Installation at BMKG Indonesia

Provisional installation of SeisComP 2 at BMKG in July 2005 by GFZ Installation of SeisComP 3 at BMKG in May 2007 by three GFZ experts Software training following the software installation

Software Installation at BMKG Indonesia

Provisional installation of SeisComP 2 at BMKG in July 2005 by GFZ Installation of SeisComP 3 at BMKG in May 2007 by three GFZ experts Software training following the software installation Software upgrade in September 2007

September 12 Bengkulu earthquake

immediately after the September training

Software Installation at BMKG Indonesia

Provisional installation of SeisComP 2 at BMKG in July 2005 by GFZ Installation of SeisComP 3 at BMKG in May 2007 by three GFZ experts Software training following the software installation Software upgrade in September 2007 Advanced software training following the September upgrade, with special emphasis on magnitudes for large events

immediately after the September training

Software Installation at BMKG Indonesia

Provisional installation of SeisComP 2 at BMKG in July 2005 by GFZ Installation of SeisComP 3 at BMKG in May 2007 by three GFZ experts Software training following the software installation Software upgrade in September 2007 Advanced software training following the September upgrade, with special emphasis on magnitudes for large events September 12 Bengkulu earthquake

immediately after the September training

Introduction

SC3@GFZ

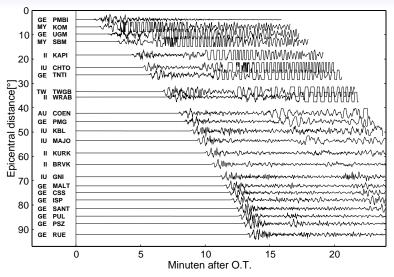
Outlook

SeisComP being used at BMKG

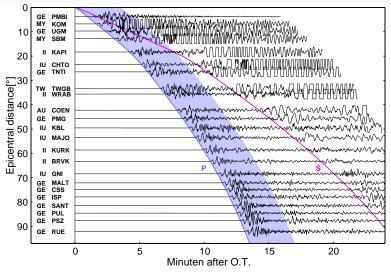
Introduction

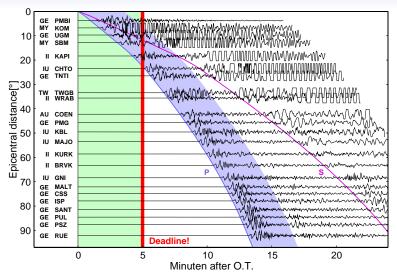
(SC3@BMKG)

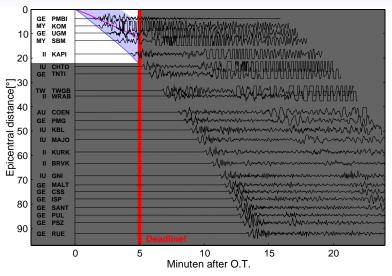
C3@GFZ

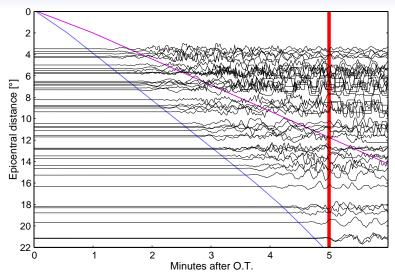

Outlook

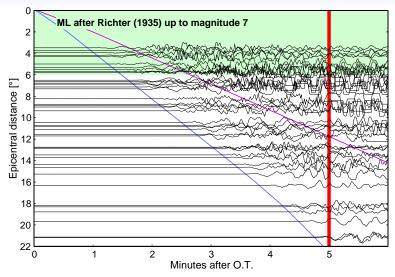
SeisComP being used at BMKG

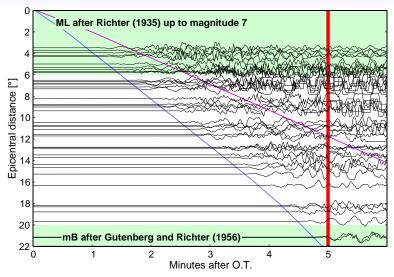


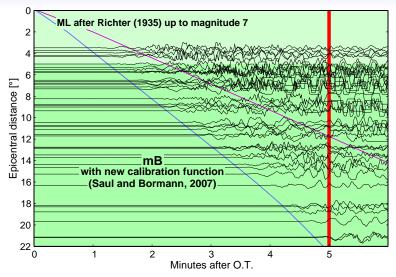












Outlook

Timeline of the September 12, 2007, Mw 8.4 Bengkulu Earthquake

First automatic location and magnitude at BMKG mb 7.3, depth 11 km at O.T. +2:28 min.

Outlook

Timeline of the September 12, 2007, Mw 8.4 Bengkulu Earthquake

First automatic location and magnitude at BMKG mb 7.3, depth 11 km at O.T. +2:28 min.

Stabilizing location and magnitudes at BMKG Mw(mB) 7.9, Mwp 8.3, at about O.T. +4 min.

BMKG tsunami warning

at O.T. +4:41 min. (M 7.9)

Automatic GFZ email alert

at O.T. +6:13 min. (M 7.9, depth 10km)

PTWC tsunami watch

at O.T. +14 min. (M 7.9)

GCMT solution

at O.T. +3:14 hrs. (M 8.4)

Outlook

Timeline of the September 12, 2007, Mw 8.4 Bengkulu Earthquake

First automatic location and magnitude at BMKG mb 7.3, depth 11 km at O.T. +2:28 min. Stabilizing location and magnitudes at BMKG Mw(mB) 7.9, Mwp 8.3, at about O.T. +4 min. BMKG tsunami warning at O.T. +4:41 min. (M 7.9)

GCMT solution

at O.T. +3:14 hrs. (M 8.4)

Outlook

Timeline of the September 12, 2007, Mw 8.4 Bengkulu Earthquake

First automatic location and magnitude at BMKG mb 7.3, depth 11 km at O.T. +2:28 min.

Stabilizing location and magnitudes at BMKG

Mw(mB) 7.9, Mwp 8.3, at about O.T. +4 min.

BMKG tsunami warning

at O.T. +4:41 min. (M 7.9)

Automatic GFZ email alert

at O.T. +6:13 min. (M 7.9, depth 10km)

PTWC tsunami watch

at O.T. +14 min. (M 7.9)

GCMT solution

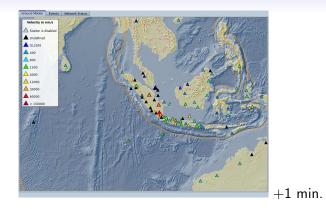
at O.T. +3:14 hrs. (M 8.4)

Outlook

Timeline of the September 12, 2007, Mw 8.4 Bengkulu Earthquake

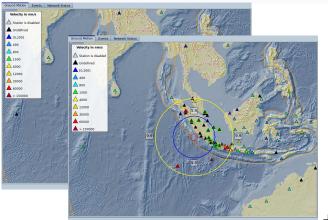
First automatic location and magnitude at BMKG mb 7.3, depth 11 km at O.T. +2:28 min. Stabilizing location and magnitudes at BMKG Mw(mB) 7.9, Mwp 8.3, at about O.T. +4 min. BMKG tsunami warning at O.T. +4:41 min. (M 7.9) Automatic GFZ email alert at O.T. +6:13 min. (M 7.9, depth 10km) **PTWC** tsunami watch at O.T. +14 min. (M 7.9)

Outlook


Timeline of the September 12, 2007, Mw 8.4 Bengkulu Earthquake

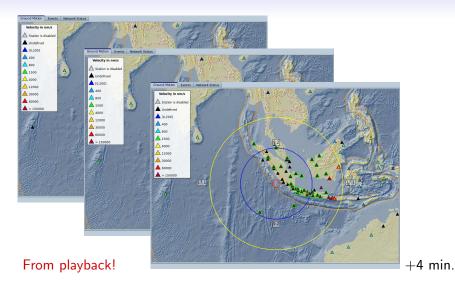
First automatic location and magnitude at BMKG mb 7.3, depth 11 km at O.T. +2:28 min. Stabilizing location and magnitudes at BMKG Mw(mB) 7.9, Mwp 8.3, at about O.T. +4 min. BMKG tsunami warning at O.T. +4:41 min. (M 7.9) Automatic GFZ email alert at O.T. +6:13 min. (M 7.9, depth 10km) PTWC tsunami watch at O.T. +14 min. (M 7.9) **GCMT** solution at O.T. +3:14 hrs. (M 8.4)

Bengkulu Earthquake - SeisComP MapView



From playback!

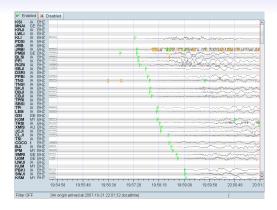
Bengkulu Earthquake - SeisComP MapView


+2.5 min.

From playback!

Bengkulu Earthquake - SeisComP MapView

The seismological software package SeisComP 3, and its role for tsunami early warning in southeast Asia


34 / 55

(SC3@BMKG)

C3@GFZ

Outlook

Bengkulu Earthquake - SeisComP GUIs

From playback!

GFZ Heinholtz Centre

(SC3@BMKG)

C3@GFZ

Outlook

Bengkulu Earthquake - SeisComP GUIs

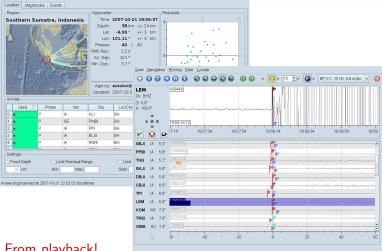
Enabled X Disabled IA BHZ IA BHZ IA BHZ IA BHZ IA BHZ IA BHZ		<u> </u>				
I IA BHZ IA BHZ (100.00)						
NI LA BHZ						
M IA BHZ manal		- CONTRA- MARKANA AND AND AND AND AND AND AND AND AND				
I IA BHZ \$25000	1 1 L	Summary Event List				
N IA BHZ monoi		_ Time	Magnitude			
II IA BHZ (WAR)	r	- mile				
IA BHZ MINI		2007-09-12 11:10:21 UTC	Mw(m	B) 7	.9	
I IA BHZ (TTAT)	T -		Type	Value	+/-	Cour
IA BHZ MANN		4 minutes and 22 seconds ago	MLv	7.8	0.16	8
IA BHZ		Region	Mw(mB)	7.9	0.40	2
IA BHZ maxi			Mwp	8.3	0.19	10
GE BHZ		Southern Sumatra, Indonesia	mB	7.8	0.13	23
IA BHZ MICH		NO PULLE ATTAX SEVERE PAR				
AU BHZ			mb	7.2	0.21	31
IA BHZ (MAN)		The Aller	-Hypocenter-			
MY BH2 W001 IA BH2 W001 SAU BH2 W001 IA BH2 W001						
MY BHZ 0000			Latitude:	4	.66° S	+/- 3 kn
GE BH7			Longitude:	101	.11° E	11 2100
NI IA BHZ MY BHZ			Longitude:	101		+/- 5101
IA BHZ www.			Depth:		10 km	fixed
	+ • • • • • • • • • • • • • • • • • • •		Phase Count:		36	
19:54:58 19:	55:48 19:56:38 19:57:28		RMS Residual		1.1 s	
r OFF An origin arrived a	at 2007-10-21 22:01:32 (localtime)					
		and the second states of the second sec	Azimuthal Gaj		121 °	
			Agency:	autolo	c@seiscomp	
			Origin Status:	au	tomatic	
			First Location	O.T. + 2	m 06s	
			This Location	0.T. + 4	m 17s	
		A AND AND A SA AND A				
		1 A with much in an				

From playback!

event update received

Outlook

Bengkulu Earthquake - SeisComP GUIs


Region			Hypocente	r		Residu	als			
outher	n Sumatra,	Indonesia	Time:	2007-10-23	19:56:37	4.				
Filmer and	In Strange	PA IN	Depth:	38 km	+/- 24 km	1				
4	M. Hac	2.200	Lat:	-4.66 °	+/-3 km	1				
		11/0	Lon:	101.11 °	+/-3 km	+		12		
		All -	Phases:	40 /	40		ε.		•	
- 20 A		1000	RMS Res.:			0.		•		
1	0		Az. Gap:			0.		· · · ·		-
Jarl		100	Min. Dist.:	3.7 °		1	1.	1.0	•	1
1 Stradt R										
		37		autoloc@se 2007-10-21		-4		10		2
univals Used	∑ Phase	Net				0	'es	10 Dis	Az	
Used	∑ Phase	Net IA	Updated:	2007-10-21	20:01:31	0	tes 3.74		Az	
Used			Updated:	2007-10-21	20:01:31	0		Dis	Az	
Used	P	IA	Updated: Sta Kul	2007-10-21 Loc/Cha BH	20:01:31 Time 19:57:31:4	0 R	3.74	Dis 93		
Used x x x	P P	IA GE	Updated: Sta KLI PMBI	2007-10-21 Loc/Cha BH BH	20:01:31 Time 19:57:31.4 19:57:34.8	0 -1.30 -2.03	3.74 4.05	Dis 93 65	1	
Used S S S S Used S S S S S S S S S S S S S S S	P P P	IA GE IA	Updated: Sta KLI PMBI PPI	2007-10-21 Loc/Cha BH BH BH	Time 19.57:31.4 19.57:34.8 19.57:37.8	0 -1.30 -2.03 -1.76	3.74 4.05 4.27	Dis 93 65 350	1	
Used x x x x x x x x	P P P P	IA GE IA IA	Updated: Sta KLI PMBI PPI BLSI	2007-10-21 Loc/Cha BH BH BH BH BH	Time 19.57:31.4 19.57:34.8 19.57:37.8 19.57:37.9	0 -1.30 -2.03 -1.76 -0.85 -1.28	3.74 4.05 4.27 4.18 4.48	Dis 93 65 350 100	l	
0 x 1 x 2 x 3 x	P P P P P	IA GE IA IA	Updated: Sta KLI PMBI PPI BLSI RGRI	2007-10-21 Loc/Cha BH BH BH BH BH	Time 19:57:31.4 19:57:31.4 19:57:37.8 19:57:37.9 19:57:41.3	0 -1.30 -2.03 -1.76 -0.85 -1.28	3.74 4.05 4.27 4.18 4.48	Dis 93 65 350 100 16	l	
Used 0 x 1 x 2 x 3 x 4 x	P P P P	IA GE IA IA	Updated: Sta KLI PMBI PPI BLSI RGRI	2007-10-21 Loc/Cha BH BH BH BH BH	Time 19:57:31.4 19:57:31.4 19:57:37.8 19:57:37.9 19:57:41.3	0 -1.30 -2.03 -1.76 -0.85 -1.28	3.74 4.05 4.27 4.18 4.48	Dis 93 65 350 100 16		20

From playback!

GFZ Helmholtz Centre Potspam

Bengkulu Earthquake - SeisComP GUIs

From playback!

Introduction

SeisComF

Magnitudes

(SC3@BMKG)

SC3@GF2

Outlook

Inauguration INATEWS/GITEWS

Jakarta, November 11, 2008

Upgrade to SeisComP at GFZ

- Since August 1st, 2007, SeisComP is used for generating automatic GFZ EQ alerts
- Fully automated alerts for all events with at least 25 P picks
- Events with less than 25 P picks are published only after manual review
- Manual review may take half a day or more, as GFZ is not a monitoring facility, no 24/7 service

Upgrade to SeisComP at GFZ

- Since August 1st, 2007, SeisComP is used for generating automatic GFZ EQ alerts
- Fully automated alerts for all events with at least 25 P picks
- Events with less than 25 P picks are published only after manual review
- Manual review may take half a day or more, as GFZ is not a monitoring facility, no 24/7 service

GFZ Heimholtz Centre Potspam

38 / 55

Upgrade to SeisComP at GFZ

- Since August 1st, 2007, SeisComP is used for generating automatic GFZ EQ alerts
- Fully automated alerts for all events with at least 25 P picks
- Events with less than 25 P picks are published only after manual review
- Manual review may take half a day or more, as GFZ is not a monitoring facility, no 24/7 service

GFZ Heimholtz Centre Potspam

Upgrade to SeisComP at GFZ

- Since August 1st, 2007, SeisComP is used for generating automatic GFZ EQ alerts
- Fully automated alerts for all events with at least 25 P picks
- Events with less than 25 P picks are published only after manual review
- Manual review may take half a day or more, as GFZ is not a monitoring facility, no 24/7 service

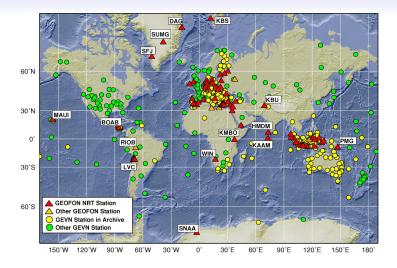
GFZ Heimholtz Centre Potspam

Upgrade to SeisComP at GFZ

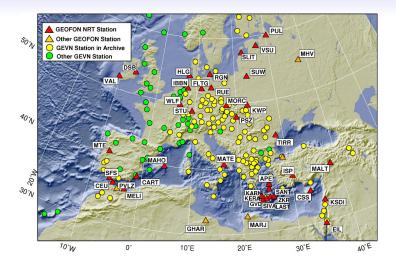
Automatic GEOFON Earthquake Locations

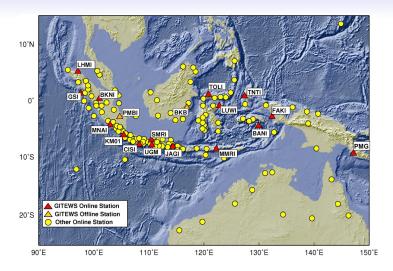
	20					
🕨 🐵 • 🚱 🕓 🛅		inttp	k//geofon.gfz	potsdam	.de/db/	aqinfo.php 🔯 🔹 🕨 💽 🕻 Google
Automatic GEOFON	art 🔝	22 ev07102	1124043 loca	tion	Q)	
Lis	t of au	tomatic	GEOFON	l earth	ngual	ke locations
						(N) and credit belongs to all involved
			Institutio	inst		
						arthquake locations may be erroneous!
						t not be disseminated to third parties.
This page was gene	rated at 20		3:07:34 GM	Legen		ilable as real-time RSS news feed
			pocenter	Legen		
Origin Time (GMT)	Mag	Lat.	Lon.	Depth	туре	Region Name
2007-10-21 12:40:13.9	5.6	3.16 S	100.50 E	51	A	Southern Sumatra, Indonesia
2007-10-21 12:34:06.6	5.1	3.01 S	100.51 E	49	A	Southern Sumatra, Indonesia
2007-10-21 11:04:27.2	4.3	40.37 N	25.64 E	10	м	Aegean Sea
2007-10-21 10:25:11.7	6.3	7.06 S	153.91 E	138	A	New Britain Region, P.N.G.
2007-10-21 07:30:13.3	2.3	50.20 N	19.11 E	1	M	Poland
2007-10-21 03:55:38.3	4.4	42.34 N	12.89 E	5	M	Central Italy
2007-10-21 02:33:42.6	2.9	51.32 N	15.85 E	2	м	Poland
2007-10-20 23:40:42.0	5.4	9.05 S	111.42 E	54	A	South of Java, Indonesia
2007-10-20 21:40:10.9	4.9	16.72 S	174.16 W	73	A	Tonga Islands
2007-10-20 20:30:26.7	4.9	1.39 S	99.32 E	48	A	Southern Sumatra, Indonesia
2007-10-20 19:56:24.7	5.3	36.41 5	72.83 W	48	A	Near Coast of Central Chile
2007-10-20 19:25:36.9	5.5	5.59 N	126.58 E	50	Α.	Mindanao, Philippines
2007-10-20 15:14:48.2	4.4	16.88 N	95.51 W	10	м	Oaxaca, Mexico
2007-10-20 11:57:58.8	5.1	20.68 S	178.08 W	305	A	Fiji Islands Region
2007-10-20 11:18:32.8	4.7	41.23 S	89.76 W	10	м	Southeast of Easter Island
2007-10-20 10:05:52.3	4.8	40.08 N	142.94 E	62	м	Near East Coast of Honshu, Japan
2007-10-20 09:47:23.3	2.3	49.85 N	18.43 E	1	M	Czech and Slovak Republics
2007-10-20 08:52:33 6	5.4	14 92 5	72.49 M/	66		Central Peru

Upgrade to SeisComP at GFZ


Automatic GEOFON Earthquake Locations

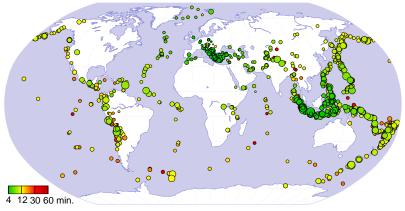
Automatic GEOFON e	art G						shp 🔯 🗡 🕨 🕅 Google 🔤
					31(
			GEOFON Inded Virtua	I Netwo			cations d credit belongs to all involved
and the second se							ake locations may be erroneous!
he information on this p	age is pro	vided for s	clentific use	only an	d mus	t not I	be disseminated to third parties.
This page was gener	rated at 20	07/10/21 1	3:07:34 GM	and is a	so avai	lable !	2atel Bearbeiten Ansicht Chronik Lesezeichen ScrapBook Extras Hilfe
			w search	Legen			🕼 - 📩 - 💽 👩 🐴 🛞 👟 📗 🖞 http://www.gfz-potsdam.de/geofon/alerts/ev07 🔹 🕨 📿 - Google
		H	pocenter				
Origin Time (GMT)	Mag	Lat.	Lon.	Depth	туре	Rei	🔄 🚆 Automatic GEOFON earthqu 🔝 🚆 ev071021124043 location 🔛
007-10-21 12:40:13.9	5.6	3.16 5	100.50 E	51	A	Sou	Region: Southern Sumatra, Indonesia
007-10-21 12:34:06.6	5.1	3.01 S	100.51 E	49	A	Sou	
007-10-21 11:04:27.2	4.3	40.37 N	25.64 E	10	м	Acc	Time: 2007/10/21 12:40:13.9 UTC
007-10-21 10:25:11.7	6.3	7.06 S	153.91 E	138	A	Net	Magnitude: 5.6
007-10-21 07:30:13.3	2.3	50.20 N	19.11 E	1	м	Poli	Epicenter: 100.50°E 3.16°S
007-10-21 03:55:38.3	4.4	42.34 N	12.89 E	5	м	Cer	
007-10-21 02:33:42.6	2.9	51.32 N	15.85 E	2	м	Poli	Depth: 51 km
007-10-20 23:40:42.0	5.4	9.05 S	111.42 E	54	A	Sou	
007-10-20 21:40:10.9	4.9	16.72 S	174.16 W	73	A	Ton	KUALA LUMPUR
007-10-20 20:30:26.7	4.9	1.39 S	99.32 E	48	A	Sou	Seremban
007-10-20 19:56:24.7	5.3	36.41 5	72.83 W	48	A	Net	
007-10-20 19:25:36.9	5.5	5.59 N	126.58 E	50	A	Mir	Johore SINGAPORE
007-10-20 15:14:48.2	4.4	16.88 N	95.51 W	10	м	Oax	Poken Baru OBandung
007-10-20 11:57:58.8	5.1	20.68 S	178.08 W	305	A	Fiji	0° - Bandung
007-10-20 11:18:32.8	4.7	41.23 S	89.76 W	10	м	Sou	Padang
007-10-20 10:05:52.3	4.8	40.08 N	142.94 E	62	м	Net	Djambi
007-10-20 09:47:23.3	2.3	49.85 N	18.43 E	1	M	Cze	Octamo
007.10.20.08:52:33.6	5.4	14 02 5	77.49 W/	66		Cor	
://www.gfz-potsdam.de/geo	forvalerts/	20071021124	1043/				Palembango
							5'S - Tanjung
							out of the second s
							Boge


Seismic network used at GFZ

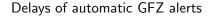


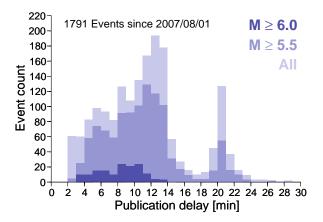
Seismic network used at GFZ

Seismic network used at GFZ

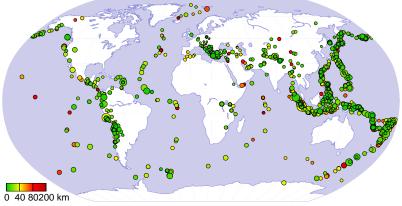


Performance of SeisComP at GFZ


Delays of automatic GFZ alerts since August 1, 2007

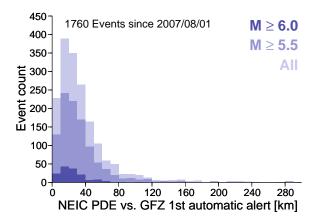


Performance of SeisComP at GFZ



Performance of SeisComP at GFZ

Location difference of automatic GFZ alerts vs. PDEs



Performance of SeisComP at GFZ

Location difference of automatic GFZ alerts vs. PDEs

SC2 legacy programs superseded by SC3 equivalents Autopick, Autoloc, ...

Improved configuration

Convenient configuration using plain text files. Very few settings are *required*, most have reasonable defaults.

Database replication

and clean-up to avoid database congestion. Work in progress

Support for PostgreSQL

fully implemented

Messaging stability

e.g. automatic re-connect

Code portability

Currently POSIX-only, porting to MacOSX successful

SC2 legacy programs superseded by SC3 equivalents Autopick, Autoloc, ...

Improved configuration

Convenient configuration using plain text files. Very few settings are *required*, most have reasonable defaults.

Database replication

and clean-up to avoid database congestion. Work in progress

Support for PostgreSQL

fully implemented

Messaging stability

e.g. automatic re-connect

Code portability

Currently POSIX-only, porting to MacOSX successful

SC2 legacy programs superseded by SC3 equivalents Autopick, Autoloc, ...

Improved configuration

Convenient configuration using plain text files. Very few settings are *required*, most have reasonable defaults.

Database replication

and clean-up to avoid database congestion. Work in progress

Support for PostgreSQL

fully implemented

Messaging stability

e.g. automatic re-connect

Code portability

Currently POSIX-only, porting to MacOSX successful

SC2 legacy programs superseded by SC3 equivalents Autopick, Autoloc, ...

Improved configuration

Convenient configuration using plain text files. Very few settings are *required*, most have reasonable defaults.

Database replication

and clean-up to avoid database congestion. Work in progress

Support for PostgreSQL

fully implemented

Messaging stability

e.g. automatic re-connect

Code portability

Currently POSIX-only, porting to MacOSX successful

SC2 legacy programs superseded by SC3 equivalents Autopick, Autoloc, ...

Improved configuration

Convenient configuration using plain text files. Very few settings are *required*, most have reasonable defaults.

Database replication

and clean-up to avoid database congestion. Work in progress

Support for PostgreSQL

fully implemented

Messaging stability

e.g. automatic re-connect

Code portability

Currently POSIX-only, porting to MacOSX successful

SC2 legacy programs superseded by SC3 equivalents Autopick, Autoloc, ...

Improved configuration

Convenient configuration using plain text files. Very few settings are *required*, most have reasonable defaults.

Database replication

and clean-up to avoid database congestion. Work in progress

Support for PostgreSQL

fully implemented

Messaging stability

e.g. automatic re-connect

Code portability

Currently POSIX-only, porting to MacOSX successful

Autopick plans

Improved picking

e.g. by using AR-AIC algorithms

Improved picking

e.g. by using AR-AIC algorithms

Multi-band phase picking

e.g. by simultaneous picking in multiple frequency windows

Offline mode

for picking from data files, writing to pick lists

Debug mode

characteristic functions written to file

Improved picking

e.g. by using AR-AIC algorithms

Multi-band phase picking

e.g. by simultaneous picking in multiple frequency windows

Offline mode

for picking from data files, writing to pick lists

Debug mode

characteristic functions written to file

Improved picking

e.g. by using AR-AIC algorithms

Multi-band phase picking

e.g. by simultaneous picking in multiple frequency windows

Offline mode

for picking from data files, writing to pick lists

Debug mode

characteristic functions written to file

Crash recovery

start with complete recent set of picks/origins from database

Manual picks

should flow back into Autoloc

Locator interface

to permit plug & play for additional locator programs

Crash recovery

start with complete recent set of picks/origins from database Manual picks should flow back into Autoloc

Locator interface

to permit plug & play for additional locator programs

Crash recovery

start with complete recent set of picks/origins from database

Manual picks

should flow back into Autoloc

Locator interface

to permit plug & play for additional locator programs

Support for small networks

velocity models, grid optimization, ...

Magnitude calibration

required especially for MJ, ML

Faster magnitudes

by producing incremental amplitude measurements

Focal meachanisms

determined in near-real time

Rupture tracking

teleseismic and regional

Support for small networks

velocity models, grid optimization, ...

Magnitude calibration

required especially for MJ, ML

Faster magnitudes

by producing incremental amplitude measurements

Focal meachanisms

determined in near-real time

Rupture tracking

teleseismic and regional

Support for small networks

velocity models, grid optimization, ...

Magnitude calibration

required especially for MJ, ML

Faster magnitudes

by producing incremental amplitude measurements

Focal meachanisms

determined in near-real time

Rupture tracking

teleseismic and regional

Support for small networks

velocity models, grid optimization, ...

Magnitude calibration

required especially for MJ, ML

Faster magnitudes

by producing incremental amplitude measurements

Focal meachanisms

determined in near-real time

Rupture tracking

teleseismic and regional

Support for small networks

velocity models, grid optimization, ...

Magnitude calibration

required especially for MJ, ML

Faster magnitudes

by producing incremental amplitude measurements

Focal meachanisms

determined in near-real time

Rupture tracking

teleseismic and regional

Allow concurrent pickers, associators, locators

Publication tools

Improved configurability, timeline, logging

Centralized configuration

Storage of configuration in database, i.e. in one place

Quality control

of waveforms using spectral PDFs (NEIC) integrated into SC3

Allow concurrent pickers, associators, locators

Publication tools

Improved configurability, timeline, logging

Centralized configuration

Storage of configuration in database, i.e. in one place

Quality control

of waveforms using spectral PDFs (NEIC) integrated into SC3

Allow concurrent pickers, associators, locators

Publication tools

Improved configurability, timeline, logging

Centralized configuration

Storage of configuration in database, i.e. in one place

Quality control

of waveforms using spectral PDFs (NEIC) integrated into SC3

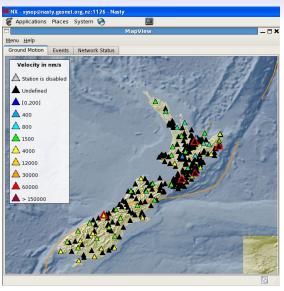
Allow concurrent pickers, associators, locators

Publication tools

Improved configurability, timeline, logging

Centralized configuration

Storage of configuration in database, i.e. in one place


Quality control

of waveforms using spectral PDFs (NEIC) integrated into SC3

Introduction

SeisComP3 in New Zealand

SeisComP3 in New Zealand

EventSumma	гу			
stions View				
Summary Events	Magnitude			
2009-10-21 08:27:00 UTC 2 hours and 22 minutes ago Region	MLv 1. Type MLv Mw(mB)	Value 1.1	+/- 0.26 -	Coun 13
North Island, New Zealand	mB mb	-	-	
	Hypocenter Latitude:	39.	94 ° S	+/- 4 kn
	Longitude:	176.	39 ° E	
The stall	Depth: Phase Count: RMS Residual:		10 km 11 0.3 s	fixed
	Azimuthal Gap Agency: Origin Status:	WEL	115 °	
	First Location: This Location:			
Revision Event Type: unknown				Show Details

SeisComP3 in New Zealand

nmary Events					
	MLv 1.	Magnitude MLv 1.8			
i hours and 39 minutes ago	Type MLV	Value 1.8	+/- 0.38	Count 27	
gion	Mw(mB)	-	-		
Cook Strait, New Zealand	mB	-	-	-	
	🚁 mb	-	-	-	
REAL PROPERTY OF	Hypocenter				
	Latitude:	40.	69 ° S	+/- 3 km	
	Longitude:	174.	51°E	+/- 3 km	
	Depth:		43 km	+/- 10 km	
day 2 July 19 19	Phase Count:		27		
State Caller	RMS Residual:		1.2 s		
	Azimuthal Gap:		85 °		
	Agency:	WEL			
	Origin Status: First Location:				
	This Location:				
		0.1. 1 1	1 1 5 5		
vision ent Type: unknown					

54 / 55

For more information please visit http://geofon.gfz-potsdam.de http://www.seiscomp3.org

